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- Fluid motion in surface waves

- General solution for surface wave amplitude
- Dispersion relation for surface waves

- The surf zone
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streamlines ofifiow in/a propagating wave

= Note that the vertical velocity at the surface = the vertical velocity of the surface.

= Note the confluent flow where the surface is rising, diffluent where it is falling.

\Water- parcel orbits

wave phase :t/T= 0,000

Instantaneous circulation = Streamline Particle trajectory
propagation (2]
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lrochoidal’'shape

The sinusoidal function we chose to represent the surface wave is an approximation.
It can be more accurately represented by a trochoid.
This is the locus of a point on a moving wheel.

Phases of the wove

0 wf2 i 3n/2 2 Sm/2 3n

Curtate cycloid

Cycloid

Analysis ofiffiuid ' moticniin 2d

Denote displacement of a particle of fluid
compared to its equilibrium position x,z as 6x, 6z.

» X
5;
Corresponding fluid velocity components are u,w. g ”
~x
Assume 6x, 6z are in phase quadrature, so fluid
particle traces out an ellipse.
z
Arrange phase so flow is to the right on wave I
crests to ensure conservation of mass. 8, F*
_—— »

=
thus we choose: LV N
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Nondivergentirrotational flow.

Calculate velocity

J 6z = A,(2) cos(kx — wt)
w = (0z) = Awsin(kz — wt) 0z = —A,(2) sin(kz — wt)

u= %(Jx) = A w cos(kz — wt)

=

Condition that velocity field is
nondivergent and irrotational comes from
conservation of mass and absence of
viscocity

|

du Jw
Nondivergent: = o=+ 2—= 0

)
I
e

Irrotational: ow Ju

ox 09z

Solution/ forrdepth dependence

substitute in

du  dw . d . _
et el —Azkwsin(kz — wt) + d_zA"w sin(kz — wt) =0

d
-kA; + aAz =0

dw du d
= L A kwcos(kz — wt) — aAzw cos(kz — wt) =0
d
kA, — an =0
SO
24,
S - kA =0

A, = ae® + geF*
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Boundary.conditions

At the surface, the vertical displacement 6z must correspond to a travelling wave

0z = Acos(kx — wt) z2=0= A, =a+8=4
At the bottom no vertical displacement allowed

82(—h) = 0 = ae* 4 geth

4 ae—kh . ekh _ g—kh . ap Bekh 5 e—kh _ ghh
=a-— = ikewise =0 —m =0\ ——5
ekh ek,h e—k.h e—kh.
or
kh —kh
€ [
a=A B=-A
ekh e—kh ekh e—kh

SO

A ek(h+z) _ e—k(h+z)

_ kz —kz __ kh kz _ _—kh_—kzy _
A, = ae™ + fe —7&’%_8_%(6 e e Me ) =A e —

_sinh(k(h + 2))
A=4 sinh(kh)

Depth dependence oficoefficients

To find Ax substitute solution for A; back into

d
-kA; + aAz =0

—kAs + ekh — g—kh

d ek(h+z] _ e—k(h+z)
i (A ) =0

h(h+z) 4 o—k(h+z)
kA, = Ak( e )

sinh(k(z + h))

_Acosh(k(z+h))
sinh(kh)

A=A A = sinh(kh)
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\Water: parcel orbits

Note that A; and Ay are both positive, and = L
for a wave travelling to the right k is 0 =iy :.;:.....-
positive. =S :5\!355! s

" e, spssE

—evcosoousoee® &

At x=0 we have 62 o cos(wt)

ni2 aatian,, ey,
S S

-4

and Oz  sin(wt)

So parcels of water describe clockwise e
rotations for a wave travelling to the right w| .-._-"_:'_-._...,

s . - : . E ;_.--' amecuomang S5 Y 8 8 g
(positive x direction) and anticlockwise = Fiisimementitt :u i
rotations for a wave travelling to the left.

Smi4 ...-
it
Note that parcel ellipses flatted as we get nearer to the !f{ig:;;m;::g gE
bottom.
Note that because the amplitude is exaggerated in the %H ¥ i{f_ ;EEE:m:E': EH
diagram, the typical shape of sharpened wave peaks is
apparent.

Y

[Deeprand/shallow water;

Which is shallow and
which is deep ?

/O\_/ f\{g}/\/\/\/\/
e

SHALLOW




Motion in shallow water

sinh(k(z + h))

= Depth of water much less than wavelength A = AT{H&)’ A=A

kh<<1

sinh(kh) ~ kh  sinh(k(z + h)) ® k(z+h)  cosh(k(z+ h)) =~ 1

b2=A(1+ h) cos(kz —wt) bz =—A ( kh) sin(kz — wt)

= Horizontal amplitude ~ A/kh, independent of .
A
at the bottom.

= Shallow water waves are essentially longitudinal
waves !

depth and >> surface wave amplitude. /\
= Elliptical orbits becoming pure horizontal motion
_——

cosh(k(z + h))
sinh(kh)

Motioniin deep water,

= Depth of water much greater than wavelength A, = 4Sh(EE+ h) A=
kh >> 1 smh(kh)
= Waves are confined to near the surface z<< h
ekh ek(z+h)

sinh(k(z + h)) = cosh(k(z + h)) ~

sinh(kh) =~ —

6z = Ae** cos(kz —wt) 0z = —Ae** sin(kz — wt)

= circular orbits
= decay in the vertical on the order of one wavelength

Ta

cosh(k(z + h))
sinh(kh)
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Stokes’ drift

= The average displacement of a fluid parcel (or a piece of driftwood) can be
calculated from its average velocity within a single period, recall for deep water:

oz = —Ae*? sin(kz — wt)

0z = Ae* cos(kx — wt)

= Express Stokes’ horizontal velocity us as average horizontal velocity in one cycle
based on Taylor expansion about displacements 6x and 6z:

Oug +6z% - 5$a25m N 2825:::
ox 0z " Bxzot 020t

Us = 0x

us = —AeF* sin(kx — wt) x —Ae**kw sin(kx — wt)

+Ae*? cos(kz — wt) x Ae**kw cos(kx — wt)

% It yields:

Ug = kwA%e?*

Dispersion relation

The dispersion relation gives the relationship between frequency and

wavelength, and we use it to diagnose the wave speeds in a given
medium.

The physical properties of the medium are important, so we must move
from basic kinematics to include dynamics, i.e. the study of forces and
accelerations in the fluid.

We must therefore apply Newton’s second law, which for fluid motion
under certain conditions can be expressed in terms of Euler’s equation
(for forces) and Bernoulli’'s Equation (for energy).
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Aside: Bernoulli's equation

The force that produces acceleration in the direction of movement is provided by
pressure forces and gravity.

The force on an element in the direction of the flow is

Aside: Bernoulli's equation

The force that produces acceleration in the direction of movement is provided by
pressure forces and gravity.

The force on an element in the direction of the flow is

pA — (p+6p)(A+ 6A) + (p + kdp)6A — pgAdscosO




Aside: Bernoulli's equation

Neglect second order terms

—  —Adp — pgAédz

du
This force must be equal to the acceleration of the parcel times its mass pAésE

so Adp+ pAJsi—?: + pgAdz =0

1@ du dz

Eds +E+gds

du ou O (steady flow)
recall @ = u$ +Z‘¥/

Aside: Bernoulli's equation

which gives Euler’s equation for force and acceleration

l@+u'@+ dz =0
pds ds gds_

l

pressure steady
gradient acceleration

gravity

Integrate Euler’s equation for a fluid of constant density to give Bernoulli's equation for energy
conservation

p v
-+ — + gz = const
p 2
pressure Kinetic gravitatignal
work energy potential

energy
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Aside: Bernoulli's equation

The conditions for Bernoulli’'s equation to be applicable are:

1) Steady flow (time independent)

2) Inviscid (“perfect fluid”)

3) Constant density

4) Following a single streamline

5) Body forces derive from a potential function.

We are OK with all except the first one !

Coordinate transformation

To express our surface wave as a time-independent equation we transform

¥ =xz—wt/k

w' = A,wsin(kz')

v =u—w/k=Aywecos(kz') —w/k

independent of time

Sy

zm
i




Bernoulli’s equation

2
Now apply Bernoulli’s equation at the surface E= Pa + v + géz
p

2
(neglect surface tension in energy equation - so we will not consider capiliary waves)
2 2 o cosh?(k(z + h)) w?
v = ‘UJ + w’ = A2w2 (W COSQ(k.'L") + EE
w? (cosh(k(z + h)) 4
—-2A? (—smh(kh) ) cos(kz')
. 12
A2 (w) sin?(ka)
sinh*(kh)
with the linear approxmation < +h~h we can write
2 2
v? = A%w?(sin®(kz’) + coth?(kh) cos?(kz")) +:—2 - 2A% coth(kh) cos(kz')

and neglect the term in blue because for small amplitude waves

A<<1/k, kA<<1, (kA)?<<kA

Bernoulli’'s equation

So the Bernoulli relation becomes

2 2

= — _ w_ ! !
E p +552 A % coth(kh) cos(kz') + gA cos(kz")

This must be independent of x’ for the property to be conserved, so the coefficients of cos(kx’) must

sum to zero.

w2

_Ak

coth(kh) + gA =0
SO

w? = gktanh(kh)

This is the dispersion relation for linear surface waves on a homogeneous fluid.
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Shallow water wave speeds

For shallow water

tanh(kh) ~ kh  w?=ghk®  w=k/gh

phase speed Cp =T =V gh
group speed Cg = dk =/ gh

Group speed = phase speed.
All wavelengths travel at same speed.
Wave is non-dispersive.

w? = gk tanh(kh)

S
O

Deep water wave speeds

For deep water

kh >>1 tanh(kh) =~ 1 w=+/gk
w g
phase speed Cp = V&
o — dw 1 [g lc
group speed 9= gk oV k" 2 b

Group speed = half phase speed
Wave shows “normal dispersion”

w? = gk tanh(kh)

A
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Dispersal of waves from a storm

= Waves spread out laterally but
also along the direction of
propagation as different periods
and wavelengths separate.

Measuring distance to a storm from the coast

At a certain distance from the origin, due to dispersion, wave period
will decrease with time, t.
We can use this to deduce the distance, L, to the origin.

L A 2m (g g
C =— === — = — = —
: c T~ %T and ¢ . sk oz
Deep-water waves

2mc? g7

=9 =
gT ¢ 21

L=

L gT 2nL
- o T=—71
t 2m gt 29
1<

_?"WV‘J\

-2

displacement (m)

One equation, two unknowns !

=

But by timing wave periods more than once 2

over a sufficient interval we can measure the ;
distance to the storm 4
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Waves change properties approaching the coast

Progressive decrease in wave speed (c) and group seed (c;)
f T >
: Individual wave crests travel at :
Individual wave crests travel at c = /g /k, ¢ = [(g/k)tanh(kh) y Allwavelengths propagate at ¢ = Jgh
| P P
g ' 1
Wave packets travel at ¢, = 5 glk= 2 C: > g > ~ : Wave energy propagate at ¢, = ./ _{7.‘: =g
™ Ll ] >
I 1
1 i =
P T 1 .
Deep water waves 1 1 Shallow water waves
I 1
q Depth between .
: A/2 and 4/20 Depth less than /20
1
1
1
1
Depth larger than /2 1
1
1
[
I
1
I
a

Approaching the shore in shallow water

Water gets shallower so waves must slow down
¢ = w/k = fA, so does the frequency change, or the wavelength ?
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Approaching the shore in shallow water

Water gets shallower so waves must slow down
¢ = w/k = fA, so does the frequency change, or the wavelength ?

A\ = A2,

Wave refraction

For shallow water waves the wave speed depends on the depth.

In a shallow region with variable depth this leads to curved ray paths.

Rays will converge towards
shallower regions.

1/10/2023
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Wave refraction

For shallow water waves the wave speed depends on the depth.
In a shallow region with variable depth this leads to curved ray paths.

Rays will converge towards
shallower regions.

Over a sudden depth change
Snell’s law can be applied

Medium 2

Refracted
light

Wave refraction

For shallow water waves the wave speed depends on the depth.

In a shallow region with variable depth this leads to curved ray paths.

Rays will converge towards
shallower regions.

Over a sudden depth change
Snell’s law can be applied




1/10/2023

Wave amplification

Approaching the shore wavelengths
decrease to accommodate slowing
waves at constant frequency.

Rays converge towards capes.

But energy must still be conserved.
Consider a surface area s with wave
amplitude A. The energy is

proportional to A2s.

Energy conservation

A%S]_ = AgSQ

leads to larger wave amplitudes
approaching the shore, particularly at
capes.

The amplification by refraction effect can also occur
in varying currents.

Waves of a given frequency must adjust their
wavelength to accommodate the added - or
subtracted current speed.

incoming swell

.

T
1
1
1
1
(}
1

Horizontal current shear can lead to
convergence of ray paths.

This leads to very large amplitude waves.




Tsunamis are shallow water waves

Finite aplitude waves

Nonlinear effects can modify the dispersive
properties of waves and keep the short and
long waves travelling together in a wave front
called a “soliton”.

Tital bores can show this property.
Also useful for transmitting signals.

v+ay
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Wave breaking

Four categories of wave breaking:

Spilling

1) Spilling breakers

Tidal bores and waves on gently sloping coastlines.
Shape-preserving solitons.

2) Plunging breakers

Waves for surfing. Gently sloping beaches.
Originate from long wave swell.

3) Collapsing breakers

Steeper beaches.
Associated with moderate wind conditions.

4) Surging breakers

Steepest beaches.
Wave slides up beach almost without breaking.

betagth ol contana, |

Also known as seiches.

Wavelength is a simple fraction of the width
of the bay or of the width of the shelf.

=
Shallow water dispersion relation gives e
associated frequency. =

Driving at this frequency can lead to a
resonant response.

For example large amplitude waves forced
by tides.
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Standing wave in a small harbour

antinode node antinode

maximum lateral movement and
minimal verical displacement

half of the wavelength of the seiche, 3 L

(b)

antinode
o wavelength, L




