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- Wind-forced waves

- Observed spectrum

- Wave kinematics

- Wavenumber and frequency
- Phase and group speed
- Dispersion relation
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\Wind-forced waves (1)

= Here is a hypothesis to explain how ocean waves Wind
—l.

might grow: e — T Ty

© Let's just imagine the surface of the ocean. It is

almost flat with a few undulations to it and a wind is blowing Wind blowing above an undulating sea-surface
across.
Wind
® Near the sea-surface, there is a little bit more space crest pemm— crest

above the trough than above the crest
(red striped area).

© So, the wind is going to occupy more space above the
troughs and by conservation of mass, it will slow down. This
is the Venturi effect.

O Bernoulli’s theorem indicates that changes in the
wind speed are associated with a pressure gradient force.
The wind accelerates from high (P+) to low (P-) pressures
and it decelerates towards higher pressures (P+).

© As a consequence, relative to the average pressure,
there is slightly less pressure (P-) above the crests and
slightly more (P+) above the troughs. The ocean surface will
thus be pushed up at the crests and pushed down in the P- P
troughs, increasing the wave amplitude.

% The wind blowing over a slight undulation makes the e e
undulation get slightly bigger. Resulting pressure increases the wave amplitude




\Wind-forced waves (2)

= The “sheltering” model of wave forcing.

serve to push the wave.
Applies to situations where winds of > 1m/s and faster than wave speed.
Waves also need to be steep enough for the effect to work.

The presence of waves modifies the air flow - creates pressure differences that

[Wave, Tides and shallow-water processes, Open university]

@Observed spectrum (1)

= Distribution of frequency for sea waves, and some of their causes.

(note that for some frequencies the energy may have been transferred from other frequencies)

energy (arbitrary units)
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[Wave, Tides and shallow-water processes, Open universityl
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Observed/spectrum (2)
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[Pond and Pickard, 1983, p209]

\Wave height-distribution

Number of waves

Statistical wave distribution

significant wave height, Hs

90th percentile

1/3 of waves ————>p

Wave height
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Basic properties in space

wave steepness (H/)

\ ‘ wave height (H)

+ / »
A A W distance

Wave propagating to the right (x increases):
= Amplitude (A)

= Wave height (H)

= Wavelenght (A)

= Steepness (H/1)

wavelength (L)

period (T)

= Amplitude (A)
= Wave height (H)
= Period (T)

= As well as wavelength and period we also represent
waves in terms of frequency and wavenumber




\Wave kinematics (1D in'space)

= Consider a propagating sinusoidal wave:

n(x,t) = A cos(kx — wt + ¢)

= Equivalently: n = Re A eilkx—wt)

_ How many

= Equivalently: 7 = Re A e'? parameters do we

need to describe thjs
Wave?

= Equivalently: 7 = Re A efe'®

= Equivalently: n = A; cos(kx — wt) + A, sin(kx — wt)

\Wave kinematics (1D/in'space)

Why is there a minus in front of w?

) == Looking downstrem =g

-

here there Direction

of propagation

If you look downstream (x > 0), you will thus be looking into the past: £

What is there (x > 0) now, was here before (t < 0).

there now, -
willbehere o TTmmees
there here Direction

of propagation
x 7

If you look upstream (x <), you are looking at oscillations that will arrive at your
position in the future: What is over there now (x < 0), will be here in the future (t > 0).
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\Wave kinematics (2D in'space)

= Consider a propagating sinusoidal wave: How many pa
rameters

do we need to descri
crib
n(x,y,t) = Acos(lx + my — wt + ¢) this 2D waye? e

= Equivalently: 7 = Re A ei(kx~»t)

=(4) *=()

= Equivalently: 7 = Re A e'?

= Equivalently: 7 = Re Ae'fe'®

= Equivalently:
n = Aq cos(kx + my — wt) + A, sin(kx + my — wt)

= We note that the wavenumber has the properties of a vector

Reriod, wavelengthrand/'speed

= Wavelength depends on direction

_2my 2 20 s o L1 1
=T M= A= KB =P 4w vt

% Wavelength is not a vector

2
e Period T = “n
w

=&

w
* Phase speed ¢z = 7 c=

(not a vector either)
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Interference and modulation

Wave trains
in phase

Water surface
displacements

Water surface
displacements

= Interference between frequencies leads to a modulation envelope that travels at
a different speed to the individual waves.

Wave trains
out of phase

time

wave group

Group propagation

= For normal group propagation,
the wave packet moves at half
the speed of the phase
propagation.

= To study the relative speeds of
the packet and the wave crests,
we need to find the “dispersion
relation”

= For this we need to move
beyond kinematics and involve
the physical properties of the
medium.

time

Group propagation " Phase propagation
Group speed ‘. Phase speed

1/10/2023



1/10/2023

Group. propagation

= Consider 2 waves of similar frequency and wavenumber
n=ReA [ei(klx—wlt) + ei(kzx—wzt)] ki=k+ Ak, ke =k— Ak

w =w+ Aw, wy =w— Aw

= Re A eilkx—wt) [ei(Akx—Awt) + e—i(Akx—Awt)]

(> Envelope moves with speed\
Aw  Ow

Y A% Ak T ok

Rapidly varying signal Slowly varying envelope | Group velocity €, = Viw
Original signal Modulation = rate of propagation of

dnformation or energy

n = Re A eikx~@t) % 2 cos(Akx — Awt)

L. - L. -

ey |
AT

time

Water surface
displacements

Dispersion

= However....

w Ow ,
Zand —— are not necessarily the same for all values of k.

k

.... SO it is possible that the envelope will distort as it displaces.

This is called dispersion.

3 cases:
1) Long-waves go faster than short-waves
2) Short-waves go faster than long waves
3) Short and lon waves propagate

at the same speed




Dispersion

CASE1: short waves go slow, and long waves go fast.

& What would happen to a wave that is a mixture of short waves and
long waves?

Day 0: Far away, a storm forces long and short waves...

Day 1: The long waves arrive first...

Day 3: The short waves arrive later.

Dispersionirelation//Dispersion diagram

= The relationship between w and k is called the dispersion relation.

= If this relationship is linear w _w  _.
(and of course w=0 when k=0), ok k¢
" . . m
% the wave is “non-dispersive” 1 Non-dispersive
fc=cy)
i s, all the @2 @z _
For non-dispersive WaV:t he same e
wavelengths propagate :
w1 w1
5=
ky ks k
———— e ——————
Long waves Short waves
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DISpersion diagram

= The relationship between w and k is called the dispersion relation.

-+ the phase speed (c) is the arrow that points from the
origin toward the curve (the ratio %}

- the group speed (c ) is the tangent to the curve (g—‘:)

w

4
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Dispersion diagram

Phase Velocity and Group Velocity

ANGULAR
FREQUENCY
G DISPERSIVE  NON-DISPERSIVE
A (cp<cy) (cp=Cg)
DISPERSIVE
(Cp>Cy)

> WAVENUMBER
k

do

Phase velocity, ¢, = % ;  Group velocity, ¢g = 7
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