| Nom et Prénoms : | | | |------------------|--|--| | | | | Note: /10 ## M1-SOAC TR3 ## **Chapter 3**: Geophysical Waves | sareme | | |------------|---| | | Let's focus on planet Earth, whose radius is $R = 6400 \text{ km}$. | | | | | /2 | 1) Compute the Coriolis parameter f at $25^{\circ}N$ and then at $25^{\circ}S$. | | | 1, compare the content parameter, at 25 % and then at 25 5 | /1 | 2) Plot f in function of the latitude (from $-90^{\circ}S$ to $90^{\circ}N$). | | <i>,</i> , | /1 | 3) derive the formulation of the meridional variation of the Coriolis force β (also called the Rossby parameter). | |-----|---| | /2 | 4) Compute β at the equator and at 45° N . | | /1 | 5) Plot β in function of the latitude (from $-90^{\circ}S$ to $90^{\circ}N$). | | | | | /2 | 6) Compute the distance between 150°E and 90°W at the equator and then at 45°N. | | /1 | 7) Which formula would you use if you had to compute the distance between Paris ([48°N; | | , 1 | 2°E]) and Rio de Janero ([23°S; 43°W]?) |