\qquad

M1-SOAC TR3

Chapter 3: Geophysical Waves

Barème

Let's focus on planet Earth, whose radius is $R=6400 \mathrm{~km}$.

1) Compute the Coriolis parameter f at $25^{\circ} \mathrm{N}$ and then at $25^{\circ} S$.
\qquad
\qquad
2) derive the formulation of the meridional variation of the Coriolis force β (also called the Rossby parameter).
/2 4) Compute β at the equator and at $45^{\circ} N$.
3) Plot β in function of the latitude (from $-90^{\circ} S$ to $90^{\circ} \mathrm{N}$).
4) Which formula would you use if you had to compute the distance between Paris ([48 ${ }^{\circ} \mathrm{N}$; $\left.2^{\circ} \mathrm{E}\right]$) and Rio de Janero ($\left[23^{\circ} \mathrm{S} ; 43^{\circ} \mathrm{W}\right]$?)
