Nom et Prénoms :		

M1-SOAC TR1

Note: /10

Chapter 1: General Properties of the Waves Wave Kinematics

ра	rem	е

/3

One of the simplest possible evolution partial differential equation that is not either hyperbolic or parabolic is the **Airy Equation**, which Initial Value Problem (IVP) can be written as $(x \in \mathbb{R})$:

$$\begin{cases} \frac{\partial u}{\partial t} + \frac{\partial^3 u}{\partial x^3} = 0\\ u(0, x) = u_O(x) \end{cases}$$

 \rightarrow Let's look for a 1D wave solution (exponential notation) of parameters A, k, ω and ϕ .

1) What are the names and physical representation of these parameters?

2) Substitute this solution into the partial differential wave equation to obtain a relationship $\omega = f(k)$ for the Airy waves.

1	3) What is the name of this relation?
2	4) Plot the relation into a diagram ω as a function of k .
1	5) What is the name of this diagram?
I	6) Are the long waves faster or slower than the short waves (justify graphically)?
I	7) Is this wave dispersive or non-dispersive?