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This chapter focuses on the propagation of waves in a geophysical fluid. We will consider
barotropic ocean waves on a rotating planet.

We begin by discussing what happens to surface gravity waves when the earth is spinning.
From the one-layer shallow-water dynamical equations vyielding surface gravity waves (see
#WAVES3.1), we will add rotation, leading to “inertia gravity waves”, and we will analyse their
properties (FWAVES3.2).

Looking for long waves propagating on a rotating planet, we will study the special case of
gravity waves that arises when there is a wall against which the waves can lean: coastal Kelvin waves
(see #HWAVES3.3).

Both inertia gravity waves and Kelvin waves are gravity waves. They propagate in the
horizontal direction and their restoring force, a mixture of gravity and buoyancy, is in the vertical
direction. But the Coriolis force, associated with the rotation of our planet, plays a fundamental role
in the way they propagate. In #WAVES3.4, we move on to Rossby waves, for which the restoring force
is not gravity. Their existence depends on the strength of the Coriolis force, which varies with latitude
on a spherical planet.

WAVES3.1: Gravity Waves from the Shallow Water Equations

3.1.a) Full shallow-water equations of motion

A
= Let’s consider a single shallow layer of fluid on a /\/

rotating planet. This layer of fluis of extends
from a flat bottom to a free surface. The varying layer thickness is h
h and the vertically uniform horizontal currents are u« and v.

% The complete equations of motion describing the
dynamics of this single layer of fluid on a rotating planet consist of
a set of 3 equations with 3 state variables — 3 unknowns — (u, v, h).

LT

1) First, the x-momentum equation for the zonal velocity (u):
du du du . dh

+u—x+v—y—fv =-95

* On the left-hand side of the equation, there is the tendency term (du/dt) for the zonal
velocity, without which there would be no time evolution and the system would remain stationary.

* Then, there are the zonal (udu/dx) and meridional (vdu/dy) advection terms. Together

with the tendency term, they contribute to the acceleration of a parcel of fluid as it moves with the

. .. D
flow and form the material tendency of the zonal velocity (D—I:).

% Note that, the advection terms are non-linear, i.e. they are terms in which there is a product
of two state variables (1 X u and v X u). If the fluctuations of u, v, and h are small (relative to a given
mean state), then any quadratic term in which there is a product of state variables will be very small.

= According to Newton’s law — force equals mass times acceleration, or force per unit mass
equals acceleration — there are two forces acting on this system:

-~ The Coriolis force (—fv) is the term associated with the rotation of the planet. It deflects
the flow to its right in the northern hemisphere. Since this term is not a real force, but only an artifice
(fictitious force) of having changed our coordinate system, it is traditionally placed on the left-hand
side of the equation.

- The real force, on the right-hand side of the equation, is the pressure gradient force. In a
single-layer system it is written in terms of the gradient of the layer thickness dh/dx. In a
homogeneous hydrostatic fluid, this term is equal to p; 1dp/dx.

2) The y-momentum equation for the meridional velocity (v):
av av av L dh

% This equation is similar to the x-momentum equation. It consists of the material tendency
of the meridional velocity, the Coriolis force, and the pressure gradient force.
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2%order differential equation

3) The equation for the mass conservation, the continuity equation.
dh dh dh (au 617)

— u— _—

@

a-i_ay

% It is expressed here as a material tendency of the layer thickness (or surface height) driven

by divergence. Convergence or divergence in the fluid results in an increase or decrease in the
thickness of the layer.

We are going to analyse this set of equations and try to find wave solutions. Before we do

that, we will simplify the system to recover the properties of the shallow-water linear waves in a non-
rotating system derived in #Chapter2. We will then reintroduce rotation.

3.1.b) Gravity waves in non-rotating shallow water

= Let’s start with something very simple: a one-dimensional non-rotating linear system. We

will remove the y-dimension, remove the rotation of the planet, and neglect the non-linear terms to
create a linear system that can be solved analytically.

% The shallow water system can be simplified as follows:
* A one-dimensional system in the x-direction, so we cross out the y-momentum

equation and the y-direction terms (no v and no variations in y). The flow will be uniform in
the y-direction.

* A , Sowe

¢ A linear system, so we eliminate any terms that are quadratic in the state variables

(all terms with a product between two state variables, i.e., the advection terms and divergence
terms).

a_+u + v A= —0—— H u’v

t y
dh N - _h (Bu N d
at 0x y dx Jdy

L, There is a little subtlety in the continuity equation, as we do not want to completely

NRRRRRRY

d . .
remove h%. We want to keep some aspect of divergence otherwise there would not be any

variations in surface height.

S Unlike to u and v, which are just perturbations, h is the mean depth (H) plus a
dh an

perturbation () around that reference depth, so that we can write h = H + 1, and — =

at  at’
“ We linearize the quadratic term of the continuity equation by considering a

du du
constant average layer thickness H so that: ha—x ~H P

o This g . " du an an du
IS gIves us two equations at g ax at ax

% These two equations can be combined to eliminate one variable between the two

and

unknowns. We differentiate the x-momentum equation with respect to x and differentiate the
continuity equation with respect to time (£), thus eliminating u. This results in the following second-
order ordinary differential equation for u:

d°n d%n
oz =952
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Solution and Properties

Dispersion relation

= As in #WAVES1.2d, the wave-like solution to this equation can be written with a

trigonometric function with an imaginary exponential: § = Re i) elt—wt)

® |t is the real part of some amplitude coefficient (ii) times the classical imaginary exponential
propagation part:
- L is the zonal wavenumber (2 7 divided by the x-wavelength),
“{- o is the angular frequency (2 7 divided by the period).

< This is a wave propagating in the positive x-direction when | > 0 (see #WAVES1.2d).

= Taking a derivative of this trigonometric function yields the same function multiplied by some

constant coefficients: 3 3
— - —iw —=il
at dx
= Substituting this solution and its derivatives into the wave equation gives a relationship
between frequency @ and wavenumber [ (with two geophysical parameters: gravity g and average
layer thickness H): w? = gHI>.
% This is the non-dispersive dispersion relation for
gravity waves in shallow water (see #WAVES2.3d), from which
we can derive the shallow-water wave phase and group speeds:

e H(_aw)
CTTT I T G

[l This derivation is much faster than the procedure in #WAVES2. This is because all the
assumptions introduced gradually in #WAVES2, are built into the shallow-water equation set from the
start. We can immediately write the solution and confirm the result for one-dimensional shallow-water
waves in a non-rotating linear system. Let’s now put rotation back into the system.

WAVES3.2: Inertia Gravity Waves

3.2.a) Adding rotation

Maximum Spin
= The next step is to put back into I o
the linear system. We put the Coriolis terms back into the -
system and we maintain linearity.

Since the Coriolis force pushes perpendicular to the
direction of motion, we have to go back to a two-dimensional
situation with 3 equations again: the
linearized x-momentum, y-momentum, and continuity (with
2D divergence) equations.

These are the single-layer linear shallow-water
equations on a flat bottom and an (f is a constant) with
linear perturbations in u, v, and n:

Planetary
Vorticity

du _ dn

ot 1V T 90

— dv n an

s J— u=—-—qg—

H uv — gt 3y
e an du dv
= 7o)

— at dx 0y

There are two ways to solve this system for plane-wave solutions. There is the tedious
algebraic way which we will do first (see #WAVES3.2b). Then there is a cleverer way which will be
done in H#WAVES3.2c.
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3.2.b) METHOD1: Using differentiation to find the wave solutions
= We have a system of three equations with three unknowns, and three constant geophysical
parameters (f, g, and H).

% To solve this system, we can use the same method we used in #WAVES3.1b, i.e.,
differentiate the equations judiciously in order to eliminate two of these three variables. This will
result in one high-order differential equation for one state variable (u, v, or ).

= We will eliminate u and v and search for an equation in 7.

% As we manipulate these equations, along the way we will encounter some very important
equations that describe fluid dynamics on a rotating planet.

= In the following, we will use subscripts notation for derivatives, so that 1, is g—z. The linear
shallow-water equation on an f-plane can be written as:
U —fr+gne=0 (1)
v+ fu+gny, =0 (2)
m+H(ux+vy)= 0 (3)

There are 5 steps to derive a third-order differential equation for 7:
1) First, we form the vorticity equation from the momentum equations.

< The vorticity is the curl of the momentum so that we take the curl of the momentum
equations: the x-derivative of the y-momentum equation minus the y-derivative of the x-momentum
equation (d(2)/dx — a(1)/dy). We get an equation for the time evolution of the relative vorticity

(€ =v,—uy):
Y (v — uy)t +f(ue+vy)=0 (V)
% The time tendency of the relative vorticity arises from f times the divergence of the flow
(D = uy + vy). Note that the pressure gradient terms cancel out in the process.

2) By taking the divergence of the momentum equations, we can then form the divergence
equation (d(1)/dx + 2(2)/dy), which gives:

(uy + vy), — f(v, — u,)+gvVn=0 (D)
t

< The tendency of the divergence arises from the f times the vorticity, plus a Laplacian term
in the surface height perturbation (the gravity wave source, see #WAVES3.1b).

3) Substituting the vorticity equation (V) into the continuity equation (3) gives an equation
for the surface height tendency in terms of the time tendency of the relative vorticity:

H
Nt — ?(Vx _uy)t =0 ()

4) We substitute the divergence (D) into the time derivative of the continuity equation (3),.
Nee + FH(ve —uy) — gHVZn = 0
5) If we take the time derivative of this equation, we can substitute (vx — uy)t using (*):
Neee + fH(Ux W uy)t - Q'HVZTJ':: =0

Neee + 21 — gHV?n, = 0

% We obtain a third-order differential equation for surface height perturbations.
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Solutions and algebraic system

= We can integrate this equation in time and with the appropriate initial conditionatt = 0,
we can set the integration constant to zero. The departure from geostrophic equilibrium follows a
second-order differential equation:

Nee —gHV* N + f2n =0

%, We search for plane-wave solutions (1 = #j e!k*=@t) = § pi(x+my-wi))

= Solutions have the form of an amplitude coefficient times an imaginary exponential:
- L is the zonal wavenumber (2 7 divided by the x-wavelength),
- m is the meridional wavenumber (27 divided by the y-wavelength)

- k is the vector wavenumber (k = (I,m)), so that k? = [? + m?
- wis the angular frequency (2 rdivided by the period).

= Spatial and temporal derivatives of this trigonometric function yield the same function
multiplied by some constant coefficients:
a
at?
= This yields the dispersion relation forlinear shallow-water waves on a rotating planet:

w=*f?+ gHk?

-+ If we set f = 0 (no rotation), we recover the dispersion relation for shallow-water gravity
waves in a non-rotating fluid (see #WAVES3.1b), i.e. non-dispersive waves with a constant phase and

= — @2 \7'2—> —k2=—(I2+m?

group speeds: ¢ = ¢, = *,/gH.

-» The extra f2 under the square root means that the relationship between w and k is no
longer linear. These waves are dispersive. These are the inertia-gravity waves.

~ Before we examine this dispersion relation in detail (see #WAVES3.2d), we will derive this
dispersion relation all over again, but this time we will use a more general (clever) method to find the
wave solutions.

3.2.c) METHOD2: General method for finding wave solutions

= We recall the linear shallow-water equation on an f-plane: u—fr+gn, =0
v+ fu+gn, =0
N +H(u, +v,)=0

%, The method is to impose upfront that each state variable behaves as a plane wave, so that:
(u‘ v, 71) — (ﬁ, ﬁ, ﬁ) ei(lx-l»mymmt)

= Solutions takethe form of an amplitude coefficient times an imaginary exponential:

- [ is the zonal wavenumber (2 7 divided by the x-wavelength)

- m is the meridional wavenumber (27 divided by the y-wavelength)
- k is the vector wavenumber (k = (I,m)), so that k2 = [? + m?

- wis the angular frequency (2 7 divided by the period).

® The derivatives become coefficients: i - il i - im E - —iw
dx dy at
% Substituting the solution and its derivatives into the
—iwll — fU+iglh =0 linear system yields a , in which
—iw? + fii +iglm =0 the three unknowns are the amplitude coefficients (i1, 7, and 7).
—iwfj + H(ilid + im?¥) =0 %, The parameters are the wave properties (I, m, and w)

and the geophysical constants (f, g, and H).
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Solution and Dispersion relation

= We can write this set of equations in matrix form, resulting in an algebraic system:

—iw —f igl\ /u
( f  —iw igm) (ﬁ) =0
ilH imH —iw/ \7

= This equation is trivially satisfied if there is no wave-like perturbation (it = ¥ = 7 = 0). But
it is a completely uninteresting solution, meaning that the fluid remains at rest.

= The condition for the system to be satisfied and for the wave to have some amplitude is that
the determinant of the matrix must be zero.

a b c d f J
det| d f —a-det{ e / }—h-det _ +<--detl: ¢ }
h g i

i g h

1]

g h i

% This gives us the dispersion relation for gravity waves in a rotating fluid:
wlw? — f2—gHU?*+m?)] =0
= The solutions are either:

* A steady geostrophic flow (w = 0, no oscillation in time = a fixed stationary wave).

* A propagating wave that satisfies: = @ = £/ f? + gHk?

L, We recover the dispersion relation for inertia gravity waves that we laboriously derived in
#WAVES3.2b.

3.2.d) Limit behaviour

= Here is the dispersion diagram for these waves. The frequency w, expressed in terms of

multiples of the Coriolis frequency f, is plotted as a function of the total wavenumber k in
%)

dimensionless units (k? = [> + m

= When [ > 0, the wave propagates in the
positive x-direction, and when [ <0 it
propagates in the opposite direction.

= The dashed lines are the shallow-water
gravity waves without rotation (f = 0) for
which the relation between w and k is linear.
These waves are non-dispersive. The group
speed is equal to the phase speed

¢ =c¢yg = ./ gH (see HWAVES3.1b).

Frequency (w/f)

) ®= The red curve shows the system with
0 3 2 0 6 | 5 3 rotation, i.e. adding f? under the square root
Wavenumber (k x Ly) in the dispersion relation. These are inertia-

gravity or Poincaré waves.

= There are two interesting limits to consider:

-> For short-waves (large values of the wavenumber k > ,/f?/gH) rotation does not make
much difference to the way the waves propagate. The dispersion relation asymptotes to a straight line
in the short-wave limit. In the absence of rotation, these waves behave like ordinary, non-dispersive-

shallow water gravity waves (w? = gHk?).

< Thus, if the wave has a sufficiently short length scale, it will not be large enough to feel the
effects of the rotation, and the behaviour will approximate that of shallow-water gravity waves. This
is the case with Tsunamis. Tsunamis are short Poincaré waves, with a wavelength (A1) smaller than

+JgH/f. However, at high latitude, the rotation of the earth can affect their propagation.

72 WAVES3.2: Inertia Gravity Waves



> For larger scales (wavelengths much longer than \/gH/f), the curve flattens out, and the
frequency (w) has a lower limit of f (for k = 0). Long waves are highly dispersive.

< At very small wavenumbers, the wave begins to behave rather strangely:

= As the horizontal scale of the wave becomes larger (k ), the
becomes faster. The slope of a line connecting the origin to the curve becomes steeper (see
#WAVES1.4b).

= For short waves, the (the tangent to the curve, see HWAVES1.4b) is
equal to the phase speed, and then for larger scales (k ), the group speed tends toward
zero. ¢; = 0 would mean that there is no transmission of information from one position
to another, even though the oscillations that are separated in space are perfectly
coherent.

S For very long waves, there is almost instantaneous communication, but no actual
propagation of information. Particles are moving around in phase with a frequency that
tends to f, but they are not really propagating as a wave (c¢; = 0). This is not really a wave
anymore. It is coherent oscillations in space separated by some distance. In fact, it is just
motion in inertial circles. The motions are of such large length scales that the effects of
rotation are important and dominate over the effects of gravity.

= The ratio \/g_H/f, which defines the boundary between motions dominated by gravity and
those dominated by rotation, is an important quantity. It is known as the Rossby radius of deformation
(Lg). For motions with length scales much larger than L, rotation dominates, and for motions with
length scales much smaller than L, rotation effects are not important and gravity or buoyancy effects
dominate. This is why the waves are called or Poincaré waves.

In conclusion, for large scales, when we add rotation, the waves basically collapse to
inertial motion. We are left wondering if there is a way to have large-scale propagating geophysical
waves on a rotating planet. The answer is yes, and they are called Kelvin waves (see #WAVES3.3).

WAVES3.3: Boundary Kelvin Waves

3.3.a) Adding a wall

= Kelvin waves are a special type of wave solution to the shallow water equations in the
presence of rotation but also in the presence of a boundary.

% To find large-scale propagating geophysical waves on a rotating planet, we add a lateral
boundary to the problem, which introduces a constraint on the shallow-water equation set.

= Consider the case where there is a north-south wall on
the western side of the Ocean, at x = 0. For inertia-gravity waves,
a pressure (or height) gradient in the y-direction would induce a
velocity in the x-direction due to the Coriolis force (see
#WAVES3.2a). However, in the presence of this wall, we have an
additional boundary condition: the flow cannot cross the wall: u =
Oatx = 0.

% It is therefore reasonable to look for solutions that have
u = 0 everywhere. Therefore, a pressure gradient in the direction
of the wall cannot induce a velocity in the x-direction, and different
wave dynamics will arise, especially for long waves.

> X
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= Consider the linearised shallow-water equations (see #WAVES3.2a) but with u = 0:

a _ an
t fv= 9%

dv an

—+ — g —
at 93y

on " d +6v)
at x  dy

e This gives the geostrophic balance in the x-direction, i.e. the equilibrium between the
pressure gradient force Fp and the Coriolis force F.

_ on Diagnostic equation
fv=g dx Geostrophic balance

e In the y-direction, we recover the two equations for non-rotating shallow-water gravity
waves (see #WAVES3.1b):

v an
at g dy Prognostic equations
an v Non-dispersive waves
ot ay
% They can be combined (see #WAVES3.1b) to obtain the following differential equation:
92 a2
*n_ 0%
at? dx?

& Thus, in the y-direction, we have non-dispersive gravity waves propagating northwards or
southwards with a fixed phase speed, independent of horizontal scales (|c| = ./ gH).

C_l_.bﬂ C_l_‘.bn

= When the fluid is piled up against the wall, the pressure force will push out into the fluid. The
pressure gradient force and the Coriolis force will balance and we will have a southward flow. (In the
northern hemisphere, the Coriolis force is always directed to the right of the current).

= |f there is a dip against the wall pressure, the gradient pressure force will push towards the
wall and the Coriolis force will balance this, so the flow will be northwards.

% We will have oscillations between northward and southward flow alternating with the
crests and troughs of the wave, and the whole thing will propagate like a gravity wave along the wall.
These waves are coastal Kelvin waves.

= In the northern hemisphere, with a wall on the western side of the domain, this wave

propagates southwards. The current oscillates back and forth along the wall, but the wave propagates
with the coast to its right.

L1 To prove this, we need to consider the two solutions of the wave equation the propagate in

opposite directions (A(x) e!¥+Y and A(x) e!¥=<Y). One of these solutions is incompatible with the
geostrophic balance equation. This is beyond the scope of this lecture (see M2-SOAC GFD lectures).
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3.3.b) Properties of boundary Kelvin waves

( NORTH -

-y
i +x

Equator

o

= In the northern hemisphere, Kelvin waves
lean against the coast, with the coast to the right as
they propagate.

++_z +y

= In the southern hemisphere, f changes sign,
so all of these considerations are reversed, and Kelvin
waves propagate with the coast to the left.

-f = -f

= Here is an example of Kelvin waves. This is
the English Channel which separates England from the
rest of Europe. When tides come in from the Atlantic
Ocean, they propagate through this channel as Kelvin
waves. They lean against the coast to their right, which
is the French coast. The vertical amplitude of the tide as
it comes through the channel is greater on the French
side than on the English side: up to 11 meters near St
Malo, and only about 2 or 3 meters near Southampton.
Normandy and Brittany have higher tides than the
Southwest England. This explains why a tidal power
station has been built on the French side.

\'lh M‘ﬁ,’l

if

" l’

%, Kelvin waves are a special case of inertia gravity waves, which can propagate at large scales

even when there is a rotation in the system.

) Shallow water waves

Inertia-gravity waves

Kelvin waves

(c=cy= Jgh)
Geostrophic flow
(0,0) ad » k =
F————— S ————
Long waves Short waves

Inertia-gravity waves

12 + m?
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Barotropic vorticity equation

WAVES3.4: Rossby Waves

Another important class of planetary waves in the shallow water system are Rossby waves.
These waves are important in both the ocean and the atmosphere. Their restoring force is not gravity.
It is a horizontal displacement arising from the variation of the Coriolis force with latitude.

So far, we have considered shallow-water waves on an f-plane (in #WAVES3.2 and
#WAVES3.3), where rotation is assumed to be constant. However, the vertical component of the
earth’s rotation varies with latitude (f = 202sin(¢)) and we will see that this has important
consequences for large-scale wave dynamics.

3.4.a) Barotropic vorticity equation

= Let’s include the variation of the rotation of the earth in the momentum equation and form
the barotropic vorticity equation (as in #WAVES3.2b).

% We cross differentiate the non-linear single-layer horizontal shallow-water momentum
equations (3(2)/dx — d(1)/dy, see #WAVES3.1a), but we include the variation of the Coriolis
parameter f with latitude (y):

d ad
a{vt +uv, + v, + fu = —gny} - @{ut + uuy +vuy, — fv = —gnx}

-> The pressure gradient terms cancel out by differentiation, so:

d
Vix T Up Uy + UVyy + Uy V) + VU + fUly — Upyy — UplUy — Ully,y, — Vylly — VUy,y + [, + v% 0
- This equation can be rearranged:
af
(vtx — Uy + u(v, — uy)x + (v, — uy)y) + (e +vy) +ue(vy —wy) + 1 (ve — ) va—y =0
-» By introducing the relative vorticity of the flow, § = v, —u,, it can be written as:
af
(ft +ué, + vfy) + fluy +vy) + E(uy + 1) + v3y 0
-» Using the definition divergence of the flow V.v = u, + v, and introducing the material
tend tt"D a+ 6+ a'tfll that:
endency notation: Dt = 3t uax va , it follows that:
D a ;
—€+ (f + HV.v va_f 0 Divergence : V.v = Uy + v,
Dt y Relative vorticity : & = v —u,
- Since f varies only with latitude (it does not vary with time  Planetary vorticity: £ = 20sin(¢p)
or x), it can be included in the substantial derivative. Absolute vorticity: {, = f+¢&

= The barotropic vorticity equation can be written:

D
=it &) = = SN
Dt
% The substantial derivative of the absolute vorticity, the sum of the relative vorticity, and the
planetary vorticity (£, = f + &) equals the absolute vorticity times the divergence.

-> The divergence can be thought of as a source of absolute vorticity.
< For non-divergent barotropic flow, the absolute vorticity is conserved with motion:

D
5 +O=0
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General idea

3.4.b) Parcel displacement in a planetary vorticity gradient

= Let’s consider a parcel of fluid in an eastward flow U':

* In a non-divergent barotropic framework, the
absolute vorticity is conserved (see #WAVES3.4a) following
the parcel: {, = f + & = cst.

= On a planet with some curvature, i.e. the planetary /’
vorticity (Coriolis parameter) f varies with latitude 7/
(larger f in the north - smaller f in the south). /7

f+

= Let’s assume that at the origin, this parcel of fluid £=0 Eastward flow U
has no relative vorticity (¢ = 0). Imagine that for some reason, f-
there is a perturbation that displaces the parcel (a little bit) to
the north, where the planetary vorticity f is greater (f 7).

= In agreement with the conservation of absolute vorticity ({, = f + & = cst), the relative
vorticity of the flow must compensate for this increase in f (£ ) and § must become negative (¢ < 0).
Negative relative vorticity is associated with a clockwise flow curvature. It introduces a clockwise
secondary circulation into the fluid.

% So, the flow must curve back down towards the south and the parcel will return to its
latitude of origin. This is a stable situation, i.e. the solution oscillates in such a way that the force that
restores it to its position of origin is somehow proportional to the distance from the origin position.

T DN

’ —
/
/
7 Rossby wave
£E=0 Eastward flow U

f,

= You can imagine it overshooting and going back down south, in which case it will come back
north with positive relative vorticity.

= There is a kind of restoring force such that if the parcel goes north of a certain reference
latitude, it will be pulled back towards the south, and if the parcel goes south of its equilibrium latitude,
it will be pulled back north. This conservation of absolute vorticity triggers an oscillation of the flow in
latitude. It will create a wave, a Rossby wave. A wave for which the restoring force is not just the
Coriolis force, but the variation of the Coriolis force with the latitude.

% We need variable f for this to happen, so Rossby waves cannot work on an f-plane.

3.4.c) Barotropic Rossby wave dispersion relation
= We will describe this non-divergent barotropic wave motion in mid-latitudes where we can
make the 8 approximation for the variation of the Coriolis parameter with latitude.

%, Around a local reference latitude, where f = f;, the variation in f can be approximated by
a linear term: f = fy + By, with B being a linearization of df/dy (B = 202cos(¢y)/Reartn)-
As f increases from south to north, 8 is always positive (§ > 0) and it is maximum at the equator.

D D
= We express the conservation of absolute vorticity: Dt f+é6)=0 e Dt E+py)=0

= The constant background westerly flow is U
= The wave perturbations are u, v
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= We develop the substantial derivative:
D crpy)=Laph+ W w2 +}y{)+a+ =0
SLCHBN =GP+ U W) - v € +BY) =

& Since y does not vary locally in time or x, the equation simplifies.

= We linearize the equation and consider that the wave perturbations are small compared to
the mean flow. We cross-out all the quadratic terms:

0¢ 9 0 _
E”H/{a*” y+ﬁv—0

| - | W,
= Using the definition of the stream function ¢, u = —a—,v = a—,f = V4,
We can write the linear perturbation equation in Y x
d d ay
—V? U—V? — =0
dat vk dx v dx

= We are going to look for wave-like solutions (plane-wave solutions):
lp = Re l/'; ei(lx+my—wt)

® They have the form of an amplitude coefficient times an imaginary exponential:
- L is the zonal wavenumber (2 r divided by the x-wavelength),
- m is the meridional wavenumber (2 7 divided by the y-wavelength)
- wis the angular frequency (2 7 divided by the period).

= Taking a derivative of this trigonometric function yields the same function multiplied by some
algebraic coefficients: 3

d
— - —iw X — > il x Ves —k2 x= —(12 + m?) x
at dx

% Substituting the solution and its derivatives into the linear vorticity equation gives:
—iw (—(2+m?) +il (-2 +m))U+Bil =0

= We obtain a relationship between ®, [ and m (with two other geophysical parameters U
and #). This is the dispersion relation for barotropic Rossby waves:

pl

12+ m2?

w = Ul

* The phase speed ¢ :? is equal to U — B/k?. k? =12 + m? and f are always positive.
Thus, relative to the background flow U, the Rossby waves always propagate westwards.

* With m = 0 (i.e. the waves have an infinite meridional extent, i.e. meridionally they cover
the entire planet), o is proportional to —f /L. Relative to the base state flow, this term is negative, so
we plot it in the negative quadrant of the dispersion diagram. The dispersion relation is a w
hyperbola, so as the zonal scales get larger, the frequencies get higher. This is a very dispersive y
large-scale wave. It is called a Rossby-Haurwitz wave.

* Once you set a meridional scale to your structure (m # 0), the denominator does
not disappear. When [ = 0 then @ = 0. The dispersion relation is very different in this case.

For the meridionally-confined structures, the have w almost
proportional to I, which means that they are almost up to a certain
point. The maximum o is found for [ = m, and then for the shorter waves (for larger m=20
[), they become very dispersive.
m# 0
l (U=0)
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3.4.d) Rossby wave properties

B

w
 The phase speedis: | €= —=U - ———
The phase speed is ] 12 + m2

S With k% = [2 + m? and P always positive, the Rossby waves always propagate westwards,
relative to the background flow U.

S The longer the wavelength (smaller k?) the faster the wave.
* The group speed on the other hand has a direction that depends on the sign of its numerator:
_dw B(1?2 —m?) 8w

a
00 e —MmJ —U - AR md)
AT (2 + m2)? i

1

. — +U(=(2+m?)"t x 2)
(12 + m2)

(12 + m?) — 212 B-m?
< Relative to the background current, the direction of propagation (2 + m2)? (12 + m2)?
of the wave’s energy depends on the shape of the wave:

If | = m, the group speed is zero.

If{ > m,i.e. waves with a larger meridional If | < m, the waves are elongated in the
scale than their zonal scale, then the ratio term in the zonal direction and the ratio term is negative. The
group speed formula is always positive. The phase phase speed and the group speed are both to the
speed of these waves will be to the west, while their west. These waves are more non-dispersive and are
group speed will be to the east. easier to observe because they will not lose their

shape as they propagate westwards.

— | —C > > D

m >

= From the dispersion relation, it follows that:
> Rossby waves are dispersive, the longer the wavelength (smaller k?) the faster the
wave (similar to deep-water waves, see #WAVES2.3e).
-+ Rossby waves closer to the equator are also faster (£ is maximum at the equator and
zero at the poles).
-» The group velocity depends on the ratio of zonal to meridional scales (for larger
meridional scales/smaller zonal scales, the group velocity is eastwards).

3.4.e) Rossby wave propagation mechanism

= Why do Rossby waves propagate to the west?

* Remember the parcel which had been displaced from its position of origin. To the north, it
has acquired negative relative vorticity resulting in a clockwise circulation. To the south, positive
relative vorticity has been induced, i.e. an anti-clockwise circulation.

* Now imagine a streamline of absolute vorticity following the parcel. It has been moved to
the north or to the south, portraying a wave.

= How would the steamline be displaced by this secondary circulation?

It will be pushed away from the origin in the west,
and towards it in the east. Thus, at a later stage, the
streamline will follow the dashed curve, effectively
shifting it to the left on the diagram. The Rossby wave
thus propagates westwards.

% The secondary circulation induced by the
constraint to conserve the vorticity produces westward
propagation.
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3.4.f) Observations

= Can we see Rossby waves in the observations?

Here is a (rather old) global
longitude-time plot (hovmaoller diagram)
of Sea Level anomalies (perturbations) at
25°S using Topex/Poseidon altimetry
data from 1993 to 1998. The longitude in
degrees covers the 3 tropical oceans:
Pacific, Atlantic, and Indian Oceans. The
white bands are the land with no
observations (America, Africa,
Madagascar, and Australia).

The diagonal stripes are the
signature of westward propagation. It
takes about five years to cross the Pacific
basin.

% So, there is some evidence for Rossby wave-like behaviour in satellite altimetry. Note that
it is more difficult to detect Rossby waves in sea surface temperature anomaly data.

3.4.g) The Rossby wave game

= Can Rossby wave exist on the following planets?

Sperical planet Pamplemousse planet Disk world

pou=,o

Double cone-shaped Spherical ll
planet

%, Remember that f is the local vertical projection of the planet’s rotation vector,

as illustrated below:

Flanet rotation 20

20 sin(¢)

F
k—7 Local vertical
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