CHAPTER 1

General Properties of Waves
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CHAPTER 1
General Properties of Waves

WAVESI] Contents
WAVESI.1: General Properties of Waves

1.1.a) Wind-forced waves
1.1.b) Observed spectrum
1.1.c) Wave height distribution

WAVESL.2: Wave Kinematics

1.2.a) Basic properties in space

1.2.b) Basic properties in time

1.2.c) Temporal frequency and wavenumber
1.2.d) Wave kinematics (1D)

1.2.e) Plane-wave propagation (2D)

1.2.f) Period, wavelength, and speed

WAVESL.3: Group Speed

1.3.a) Interference and modulation
1.3.b) Propagation of a wave group
1.3.c) Group speed formulation

WAVESI.4: Dispersion relation

1.4.a) Dispersion
1.4.b) Dispersion diagram

15

18

24

28

13






This chapter describes the general properties of the ocean surface waves. We will discuss how
they are forced by the wind (see #WAVE1.1a) and see the prevailing timescales or frequencies at
which ocean waves are observed (see #WAVE1.1b). We will then describe the fluctuations of the sea
surface and they can be represented mathematically (see #WAVE1.2). We will detail various
properties of waves, such as the wavenumber, the frequency, and the speed. We will then describe
the interferences and modulation that occur when two waves with similar frequencies are summed-
up (see #WAVEL.3). This will lead us to define the group speed. Finally, we will discuss the
phenomenon of dispersion and introduce the dispersion relation (see #WAVE1.4).

WAVESI.1: General Properties of Waves

1.1.a) Wind-forced waves

= Let's start with a question: Where do surface ocean waves come from?

%, Waves are most commonly caused by wind. Wind-driven waves, or surface waves, are
created by friction between the wind and surface water. The two fluids in contact at the ocean surface
have different speeds, resulting in frictional stress at the interface (proportional to the square of the
speed difference). At the sea surface, most of the energy transferred results in waves, and a small
amount generates wind-driven currents.

= Here is a hypothesis to explain how ocean

waves might grow: Wind

© Let's just imagine the surface of the ocean. L S

It is almost flat with a few undulations to it and a wind

is blowin g across it. Wind blowing above an undulating sea-surface
® Near the sea-surface, there is a little bit et Wind t

more space above the trough than above the crest S

(red striped area). trough

More space for the wind Above the troughs

© So, the wind will take up more space above _
the trough and due to conservation of mass, it will slow W_'”d. S

down. This is the Venturi effect. —_— T~

® Bernoulli’'s theorem (see #AppendixA) Venturi effect

states that changes in the wind speed are associated
with a pressure gradient force. The wind accelerates
from high (P+) to low (P-) pressures and it decelerates
toward higher pressures (P+).

© As aresult, relative to the average pressure,
there is slightly less pressure (P-) above the crests and
slightly more (P+) above the troughs. The ocean
surface is thus pushed up at the crests and pushed
down in the troughs, increasing the wave amplitude.

% The wind blowing over a slight undulation
makes the undulation get slightly bigger.

Resulting pressure increases the wave amplitude

= This is an oversimplification because
the wave not only grows in place, but actually
moves (propagates) in the same direction as the
wind as it grows.
% The diagram on the side is a little bit
g A\ Fhis RS = more realistic. There is a slight phase difference
/";/ (" T = between the vertical acceleration and the
position of the crests and troughs, which is

consistent with the propagation of the wave.

[Wave, Tides and shallow-water processes, Open university]
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= This is the sheltering model of wave generation (by H. Jeffreys, 1925). The back of the wave,
which is exposed to the wind, experiences a higher pressure than the front face, which is sheltered
from the force of the wind. The presence of waves thus modifies the airflow (with eddies forming in
front of each wave), creating a pressure difference that pushes the wave in the direction of the wind,
along with its amplification.

% Although this model does not explain the initial undulation, it successfully applies to
situations where the wind speed exceeds 1 m/s and is faster than the wave speed. The initial wave
must be steep enough for the effect to work.

LL More potentially hazardous waves can be caused by severe weather, such as a hurricane.
The strong winds and pressure from this type of severe storm can cause a storm surge, a series of long
waves that originate far from shore in deeper water and intensify as they move closer to land. Other
dangerous waves can be caused by underwater disturbances that displace large amounts of water
quickly such as earthquakes, landslides, or volcanic eruptions. These very long waves are known as
tsunamis. Storm surges and tsunamis are not the kind of waves you think as of crashing down on the
shore. These waves roll upon the shore like a massive sea-level rise and can reach far inland.

1.1.b) Observed spectrum

= The diagram below is the observed spectrum of the ocean surface waves. It represents
different types of waves, showing the relationship between wavelength (see #WAVE1.2a), wave
frequency and period (see #WAVE1.2b), the nature of the forces that caused them, and the relative
amount of energy in each type of wave.

% It gives an idea of how much energy is associated with different wave periods (horizontal
axis). Short waves with periods of less than one second are on the left side of the distribution, and
longer waves with periods of 12 and 24 hours are represented on the right.

cim wavelength——>
0.017m im 10m 100 m 1000 m
L L . : L ! | GRAVITY WAVES
- - - 1
type of wave CAPILLARY wind waves long-period ordinary
WAVES waves tide waves
(fixed period)
tsunamis
seiches and storm surges
cause wind cyclonic weather systems
= = . Sun
Z . earthquakes and
- wind and other  ~ = Moan
B wind waves
5
10 1 107 0% 10 10 108
- wave frequency (s™')
01s 1s 10s 30s 5 min 12 hr 24 hr
period -

[Wave, Tides and shallow-water processes, Open university]

= The observed spectrum of ocean surface waves is not evenly distributed (uniform). There
are some periods that are more energetic than others.

* The largest peak is for wind-driven waves with periods between 1 and 30 seconds.

= There is a relatively small amount of energy for the slower periods, i.e. swells, weather
systems.

= Notably, not much energy is associated with tsunamis. Not because they are not energetic.
It is because there are not that many of them (fortunately), so they do not contribute much to the
distribution.

* There are also two sharp peaks for the long periods. These are the tidal frequencies
associated with the sun and the moon. These waves and their forcing will be discussed in #Chapter>5.

16 WAVES1.1: General Properties of Waves



= Below is another way of looking at the energy of the ocean surface waves. The diagram
below is a global wave spectrum, which shows the period in which the wave energy resides as a
function of the wave frequency (f). But it is actually the periods of the waves (T') that are written on

. . 1 . . . ,
the horizontal axis. Because T = r the horizontal axis has a non-linear scale, with powers of 10

increasing to the left.

Diurnal
hces Semidiurnal

tides [Pond and Pickard, 1983, p209]

Inertial
period

Planetary
waves Swell

Wind waves

Tsunamis

RELATIVE ENERGY

T T T T T T

T T
108 107 10 105 10* 103 102 10! 1 107! seconds
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This diagram is also quite schematic. It illustrates that (from right to left):

= Wind waves and swells account for most of the energy for periods of a few seconds to a
minute.

= For longer periods, we find tsunamis. There is a slight dip in this spectrum because although
tsunamis are very energetic, there are not very many of them.

= Then, there are 3 peaks: semidiurnal tides, diurnal tides, and the inertial period.

- There are actually two frequencies for semi-diurnal tides due to the sun and the moon.

- The sun and the moon are also responsible for diurnal tides (two more frequencies).

- The inertial period is related to the rotation of the earth. If you let a parcel of water with
an given initial velocity just go freely on Earth, the effect of the rotation will act on the
parcel as if there were a force acting on it — the (fictitious) Coriolis force, and the parcel
will just go round in an inertial circle (see #WAVES3.2d). The period associated with the
inertial motion is a function of latitude, and this period is captured in this spectrum.

1.1.c) Wave height distribution

= Let’s now discuss the amplitude of the waves. The schematic below shows a statistical
distribution of the wave height at one location.

Statistical wave distribution

significant wave height, Hs

Number of waves

90th percentile

1/3 of waves ———————p

Wave height

1.1.c) Wave height distribution 17



Significant wave height

= In this diagram, the horizontal axis is the amplitude of the wave, i.e. the height between the
trough and the peak of the wave, from small waves (on the left) to larger waves (on the right). The
vertical axis counts how many waves are of a given height, i.e. the distribution of wave heights. It is a
continuous function, similar to a probability density function. The area under this curve is equal to 1,
i.e. all the waves.

% The wave height distribution function is not a symmetric distribution:

* There are many waves that are not very big and then there is a very long tail on the right
side of the distribution with a very small number of very large waves.

* This is a unimodal distribution that is skewed to the right. Most of the waves are smaller
than the mean, and the mode (the peak of the distribution) is to the left of the mean.

= If you are interested in the possible damage that might be caused by waves (for example,
if you are building a structure such as an oil rig or a harbour), you will not be interested in the average
wave height. This mean quantity is biased by the many small waves that are harmless to any marine
structure. You need to quantify the average height of the really big waves that make up the right tail
of the distribution.

% To determine the typical size of a big wave, we estimate the average of the third tercile
group of the wave height distribution.

The terciles are the two cutoff point values that divide the population into three groups of
equal size (each containing 1/3 of the number of the waves). The third tercile group, with a wave
height greater than the second tercile, represents the 1/3 of the waves with the largest amplitudes.

1st tercile 24 tercile

1/3 of the waves l 1/3 of the waves l 1/3 of the waves

Lol

Smallest Wave hei gh t {m) Biggest
wave wave

% In the wave height distribution (on the previous page), the third tercile group is highlighted
in a lighter colour, compared to the rest of the distribution, which is shown in dark blue. The significant
wave height, labelled Hg (or Hys), is defined as the average of the third tercile group. This value
informs you of the typical size of an extreme wave event, which is more useful than the average wave
height when designing a marine structure.

WAVESL.2: Wave Kinematics

= In this section, we will describe these waves. To simplify the theory of surface waves, we
will assume that the waveform is sinusoidal, and thus can be represented by trigonometric functions
(sinusoidal functions). We begin by examining the dimensions of an idealized wave in space (see
#WAVEL.2a) and time (see #WAVEL.2b) and reviewing the terminology used to describe it.

1.2.a) Basic properties in space

= On the next page is a sinusoidal function that schematizes the propagation of an ocean
wave in space.

% It shows how the displacement of the water level
varies over distance at a fixed point in time
(~ a snapshot of the wave).

18 WAVES1.2: Wave Kinematics



= Below, this wave propagates to the right (1D in space) as x increases.

Here is some vocabulary to describe the characteristics of the wave in space:

= The amplitude of the wave (A) is the difference in height between the midpoint of the wave
and its crest (or peak). The unit is meters.

= The wave height (H) is to the total overall vertical change in height between the trough and
crest of the wave. The wave height is equal to twice the wave amplitude (H = 2 x 4).

wave steepness (H/%)

wavelength (L)

= The wavelength (A) is the horizontal distance between one crest and the next crest, or
between two successive troughs. More generally, A is the distance between any phase of the wave
and the same phase again.

% In the above schematic, the water displacement () iszeroatx = Y4 dandatx = 34 A.

= For sailors, the absolute height of a wave is less important than its steepness, defined as the
wave height divided by the wavelength (H/A). In the open ocean, most wind-generated waves have a
steepness of about 0.03 to 0.06. Waves with greater steepness can be a problem for shipping.

1.2.b) Basic properties in time

= Let’'s now examine the wave properties in time. Below is

... another sinusoid that illustrates the displacement of the water level
with time at a fixed point (as measured by a wave gauge for example).
Time increases on the right.

= The wave amplitude (A) and the wave height (H) are defined
as in #WAVE1.2a. The displacement of the water level (#) at a fixed
point varies between -A (at the trough) and +A (at the peak).

= The time interval between two successive peaks (or two
successive troughs) passing at a fixed point is called the period (T) and
is usually measured in seconds.

% In the diagram below, the water displacement is zero at
t=%Tandt=34T.

"'1“”‘\““"""7i """
amplitude (A)
|

period (T)

Ll Note that the steeper the wave, the further the sea-level fluctuations depart from a simple
sine curve. Note also that the surface displacement has a trochoidal shape (see #WAVES2.1e). The
sinusoidal form of wave motion is sufficient for our purposes because it provides solutions to linear
equations. It will be used throughout the course.

1.2.b) Basic properties in time 19



waves on the blackboard

WRITTING n°T

1.2.c) Temporal frequency and wavenumber

* Let’s recall the relationship between period (T) and

& The number of peaks (or the number of troughs) that pass through a fixed point in a time
interval of one second is called the frequency of a wave. It is denoted by [, and f = 1/T. Its unit is the
inverse second or per second and is denoted by s, It corresponds to the unit Hertz.

% If we use a sinusoidal model to represent the oscillation of the wave in time, we can make
an analogy between the period of a wave and a cycle that has an angle (in radians) of 2. We can thus
define the (pulsatance) w as the rate of change of the phase of a sinusoidal
waveform. One revolution is equal to 2m, hence @ = 2w /T = 2nf, and the water displacements
represented in the sin curve in #WAVE1.2b could be written: n(t) = A cos(wt). w isin rad/s.

* The wavelength () is the distance between two successive crests in the direction of the
propagation.

% The is the spatial frequency of a wave (¥ not to be confused with the number
of waves). It is measured in radians per unit of distance. Just as angular frequency is related to the
number of waves per unit time, depends on the number of waves per unit distance. It is
defined as k = 2m /A, and the water displacements represented in the sinusoidal curve in #WAVE1.2a
could be written as: n(x) = A cos(kx). k is in rad /m.

1.2.d) Wave kinematics (1D)

= The sinusoidal model describes the water level oscillating up and down in space (see
#WAVE1.2a) and at the same time, it is also oscillating up and down in time (see #WAVE1.2b). In this
simple example, it propagates to the right (1D in space). So, we need to combine these two
descriptions (the sinusoid in space (see #WAVE1.2a) and the sinusoid in time (see #WAVE1.2b)) into
one description of a propagating wave.

But these two descriptions are not independent...

If you walk along the blackboard with a piece of chalk that you move regularly up and down
(at a given period T1), you will draw a sinusoid with a certain wavelength.

& |f you do this again but this time you move the piece of chalk faster, so that the period T; is
smaller than the period Ti. You walk along the blackboard at the same speed. You will draw a second
sinusoid with a shorter wavelength.

S If you do it again a third time, moving the piece of chalk at the period T, but this time you
walk faster along the blackboard. You will again draw a sinusoid with a longer wavelength than the
first sinusoid.

', There is a relationship between speed, period/frequency, and wavelength/wavenumber.

= Let’s have a look at the mathematical way to represent a wave. Here is a first basic formula
that represents a wave function. n represents the water displacement at any given time (t) and
space (x). n is modelled by a trigonometric function:

n(x,t) = A cos(kx — wt + ¢)
= 4 is the amplitude of the wave.
= |t is multiplied by a cosine function that represents the oscillation of the water
displacements. Inside the cosine function:
< We find the spatial coordinate x and the time t.
& There are some coefficients in front of the spatial and temporal coordinates. They make
the arguments inside the cosine function non-dimensional and expressed in radians. k will
be in rad /m, while w will have a dimension of a frequency in rad/s.
k is the horizontal wavenumber (2 7 divided by the wavelength 4, k = 2m/4),
wis the angular frequency (2 z divided by the period T, w = 2 /T).

S There is also a phase ¢ that is added. It accounts for the fact that the water
displacement does not necessarily start from zero. It can be anything from 0 to 2.

20 WAVES1.2: Wave Kinematics



4 parameters

Y% How many parameters do we need to describe this one-dimensional propagating wave?

1) the amplitude 4,

2) the horizontal wavenumber in the x-direction (k = 2m/A),

3) the angular frequency (w = 2r/T),

4) the phase ¢.

%, We need 4 parameters to describe this one-dimensional propagating wave.

= The phase speed of the waveis¢ = /T = w/k

= There are many ways to write a waveform, some of them are more useful than others. The
cosine function presented earlier may be easier to understand.

WRITING n°2: We can write any trigonometric expression in terms of a complex exponential,
such that: 1 = Re A eilx—wD)  _ po 7 gik(x—ct)

-> The amplitude becomes a complex number, and is written as A.

-» The arguments for the cosine are now the arguments of a complex exponential.

-» kx and wt are the same as before.

% In this notation, we have lost the phase ¢, because the amplitude is complex and
contains the phase. So we still have 4 parameters to describe this one-dimensional wave, because we
have to define the real and the imaginary parts of 4.

WRITING n°3: The water level fluctuations can also be written as:
n = Re A e'®

% 1t is written as the real part of a complex amplitude (4) times the complex exponential e?,
where 6 is the phase of the wave (6 = kx — wt = k(x — ct)).

WRITING n°4: If you do not like the complex amplitude, you can use a real amplitude (A),

but in this case, you have to put back the phase back, sothat: 17 =Re A elfeld

WRITING n°5: If you do not like the complex exponential and you do not like to talk about

the phase, you can write the waveform like this: n = A; cos(kx — wt) + 4, sin(kx — wt)

% The amplitude is real, but it has two components A; and A, that are associated with cosine
and sine functions, respectively. This is equivalent because the complex amplitude can actually be
writtenas: A = A; — iA, = Ae'?.

= The derivatives of the waveform become coefficients:

on(x,t) an(x, t)

T - —iwn(x,t) e

- ikn(x,t)

1.2.d) Wave kinematics (1D) 21



5 parameters

Y% Why is there is a minus sign in front of w ?

= In our example, we have chosen a wave that propagates to the right as x increases. The
cosine function develops in this direction.

= As illustrated below, if you look downstream (x > 0), you are looking into the past:
What is there (x > 0) now, was here before (t < 0).

-w = [ 0oking downstream =g

.

hat is
there now,
= - was here

before _

| P
here there Direction
of propagation

x/7

= As illustrated below, if you look in the negative x-direction (upstream), you are looking at
oscillations that will arrive at your position in the future: What is over there now (x < 0), will be here

in the future (t > 0).

df— L00KING UPStream .-_ \

~

there now,
will be here

in the future
| 1 i
there here Direction
of propagation
x 7

= To describe the propagation, we need to express the structure of the wave in terms of space
and time as angles in the arguments of the trigonometric function. Thus, since we have chosen that
the wave propagates in the direction of x increasing, we must reconcile this sign difference in the
space/time coordinates associated with the direction of the wave propagation: the fluctuations
downstream (x > 0) were at x = 0 before (t < 0) or the fluctuations upstream (x < 0) will arrive at
x = 0in the future (¢t > 0).

% To do this, we need to introduce a_minus sign so that the space and time terms have
opposite signs. We can put the minus sign either in front of the terms related to space or time.
By convention, we put the minus sign in front of w.

1.2.e) Plane-wave propagation (2D)

= Let's have a look at the mathematical
formulation of a wave propagating in a given
direction in a plane. 1 represents the water
displacements at any given time (t) and spatial
position in two dimensions (x and y). As in
#WAVES1.2d, 7n(x,y,t) is modelled by a
trigonometric function:

n(x,y,t) = Acos(lx + my — wt + ¢)

% We need five parameters to describe this two-dimensional propagating wave.
1) The amplitude A4,
The 2 horizontal wavenumbers: 2) the wavenumber in the x-direction (I = 2n/4,)
3) the wavenumber in the y-direction (m = 2 /4,),
4) The angular frequency w,
5) The phase ¢.

22 WAVES1.2: Wave Kinematics



Wavenumber and derivatives

Wavelenght is NOT A VECTOR!

= As in #WAVES1.2d, there are other ways to write a plane-wave:
WRITING n°2: We can use a complex exponential: | 1 = Re A e'kx-©0)

-» The amplitude is a complex number that represents for the phase of the wave.
-» The spatial terms in the arguments of the complex are in bold because they are vectors:

_(! _(* _
k= (m) X = (y) , and the vector product resolves to k. x = [x + my.

-+ wt is the same as before.
WRITING n°3/4: With (8 = lx + my — wt), the two-dimensional propagating sea-level

fluctuations can also be written as: | 7 = Re Ae' or n = Re A e'?e'®

WRITING n°5: Without the complex exponential and phase, the waveform can be written

with two components for the amplitude:  n = A4 cos(lx + my — wt) + A, sin(lx + my — wt)

= For a two-dimensional (plane) wave, the wavenumber k is a vector and its components
(1, m) are the projections of k onto the spatial coordinate system (x, y), such that k? = [* + m?.

= The wave phase being 8 = lx + my — wt, it is easy to derive that:

< % =l and % = m, so that the spatial gradient of & is equal to the wavenumber:
Ve =(,m)=k
< The temporal gradient of 8 is equal in magnitude to the angular frequency: % = —w

= The derivatives of the waveform become coefficients:

a Y T
— > —iw, — > il, — - im, and V2> —(I2 + m?) = —k?
at 0x y

% The direction of propagation of this plane wave is given by the vector wavenumber k.

= If we consider the wavelength 4 of the plane-wave, it is the distance between two successive
crests (or troughs) in the direction of the propagation. It is equal to A = 2m/k.

-+ We can measure the wavelength
y in the x (4,) and y (4,) directions (see the
figure on the side). Curiously, you will see
that the wavelength in the x (or y)
direction is longer than the actual
wavelength.

-» It is tempting to think of the
wavelengths as components of a vector,
but it does not work that way!
The zonal and meridional wavelengths are
not components of a vector, unlike the
zonal (1) and meridional (m) wavenumbers.

% Ay and A, along x- and y-
directions are projected onto the direction
of propagation, and not the other way
around!

- Given that k% = 12 + m?, with k = 2 /A, l =2n/d,,andm = 2n//1y, we can show that:
/2% = 1/22 + 1/45

222

< Thisleadsto: 1 = |——
A+

1.2.e) Plane-wave propagation (2D) 23



1.2.f) Period, wavelength, and speed

= Let’s review some basic terminology used to describe the propagation of a plane-wave:

e The wavelength in the x-direction A, is equal to 2m divided by the x-component of the
wavenumber ({): 1, = 2w/l

e The wavelength in the y-direction 1, is equal to 2m divided by the y-component of the
wavenumber (m): 4, = 2w /m.

L, Wavelength is WoaszRY 24 1o]

¢ The real wavelength in the propagation direction A is 2rr divided by the total wavenumber
(k). The wavenumber is a vector that is resolved by its two components ([,m), so that:
A=2n/k with k*=1?+m?

¢ The period of the wave T is 2 divided by the angular frequency: T = 21 /w

¢ The phase speed of the wave is c = w/k. The phase-speed in the x and y directions are:
¢y = w/l and ¢, = w/m

L, Similar to the wavelength, the phase speed is [ ez MV xeld

% If someone gives you the phase speed in the x-direction (c,) and the phase speed in the
y-direction (cy), you cannot resolve them to get the phase speed of the wave (c, in the direction of
propagation). You would need to know the component of the wavenumber vector (I and m), to find
the real wavelength and calculate the phase-speed.

% Similar to the wavelength, the phase speed of the wave in the x or y directions (c, or cy)
are greater than the actual phase-speed of the wave, unlike the components of a vector, which are
always less than the resultant.

LI Imagine a lighthouse firing a beam at a wall. The beam is spinning, so the speed at which
the projected light travels along the wall can be very large compared to the speed at which the light is
moving towards the wall. But nothing is actually traveling along the wall.

WAYVESI1.3: Group Speed

= So far, we have restricted our analysis to a wave with a single frequency w
— a monochromatic wave. But as we saw previously (see #WAVES1.1b), there is a whole range of
frequencies in ocean waves. In this section, we will look at the relationship between different
frequencies in a wave phenomenon. It triggers some interference, a modulation of the signal, and
some dispersion.

1.3.a) Interference and modulation

= Let's start with two frequencies.

% Imagine two waves propagating in the same direction, with the same amplitude, but at
slightly different frequencies. In the illustration, the blue wave has a slightly higher frequency (shorter
period) than the red wave.

» There is a position in time when the two crests of the two wave trains coincide. At this point,
both signals are in phase and they reinforce one another.

= Moving to the right, since the red wave is oscillating a little faster than the blue wave, the
waves gradually shift phases, to a point in time where the crests of one wave coincide with the troughs
of the other. Here, the waves are out of phase and they cancel each other out perfectly.

= Then, they come back into phase, and later on they reinforce one another... etc.

= Look at the resulting amplitude: = When the waves are in phase, their amplitudes are added
and the resulting wave has about twice the amplitude of the two original waves.
* When the two waves are out of phase, their amplitudes
cancel each other out, and the surface water has minimal displacement.

24 WAVES1.3: Group Speed



Wave trains Wave trains
in phase out of phase

Water surface
displacements

\V\//\f\/\ AN /\/\A“ﬁm
VY \/\/VVV VV VYVVY

Water surface
displacements

= The resulting signal oscillates at nearly the same frequency as the original signals, but there
is a modulation of the amplitude: a sequence of packets of large amplitude, small amplitude, large
amplitude, ... etc, forming wave groups.

% The two component wave trains thus interact, each losing its individual identity, and
combine to form a series of wave groups, separated by regions almost free from waves. This is how
AM radio works, where AM stands for Amplitude Modulation.

Tuning a guitar: A guitar has 6 strings. To tune it, you work them by pairs. If you pluck
one string with your finger at the fifth fret, it should have the same frequency as the next
string. So you can pluck them together and they should sound the same. If you hear a

horrible woo-woo-woo sound, you need to turn the tuning pegs, until you hear a perfect
wooo sound without any modulation.

When two strings are not perfectly tuned, you hear the beat frequency. This is the frequency
of the modulation packet. When both strings vibrate at the same frequency, the modulation
disappears. The beat frequency is the difference between the two frequencies.

1.3.b) Propagation of a wave group

= In the illustration above, we had two waves that are very similar to one another (very similar
wavelengths, very similar frequencies). They both propagate in the x-direction. What about the wave
group packet? How does it propagate? The same way? Does it propagate at the same speed?

% Not necessarily. The wave group packet could propagate at a different speed. It could even
be traveling in the opposite direction.

= Sometimes, we observe this in traffic. An abrupt slowdown in concentrated traffic
(compression wave) can travel as a pulse (a shock wave) along the line of cars. It can travel either
downstream (in the direction of traffic) or upstream, or it can be stationary. It depends on the speed
of the cars and the distance between the cars.

Toutter >V —_—,
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= Below is an example of a wave packet propagating downstream, i.e. in the same direction
as the individual crests and troughs. We can mark an individual crest with a cross and follow it as it
propagates. At the same time, the wave packet is propagating and we can mark the center of the
packet (gray rectangle) with a circle.

% The wave and the wave group do not propagate at the same speed. The individual crests
are traveling faster than the packet.

¢ The propagation of the individual crests is the phase propagation and the speed of
the individual crests is the phase speed c.

» The propagation of the packets is the group propagation and the speed of the group
wave is the group speed ¢,

= This is how surface gravity waves behave in deep-water (see #WAVES2.3e): we will show
that for deep-water waves, the group speed is half the phase speed.

% Imagine a packet moving along and individual crests are propagating through the packet
amplifying and then going out the front and fading away.

What's interesting is that the energy associated with that perturbation propagates at the
group speed and the information propagates at the group speed.
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Group speed

1.3.c) Group speed formulation
= Let’s formalize the expression of the group speed.

% Here is the mathematical description of two waves that are very similar:

* They have the same amplitude and the same phase (4 ).
» They have very similar wavenumbers k; = k + Ak and k, = k — Ak.
* They have very similar frequencies w; = w + Aw and w,; = w — Aw.

% where Ak and Aw are very small.
= We write down the wave function for the sum of these two waves (as in #WAVES1.2d):

n= Re El-ei(klx_wlt) + ei(kzx—wzt)]

% We substitute the definition of k,, k,, w;, and w, using k, Ak, w, and Aw. It follows:

n= Re ;Zfei(kx—wt)[ei(Akx—Awt) RS e—i(Akx—Awt)]

e |t can be written as the original wave (Re Auef(kx_wt)) times the sum of twoe complex
exponentials with Ak and Aw. This term is actually two times the cosine of (Akx — Awt). It gives:

n = Re A e!(kx—wt) 3 3 cos(Akx — Awt)

Rapidly varying signal
Original signal

e This is the original wave multiplied by 2 times the cosine of another wave.

%, The parameters of this envelope wave are, instead of k and w, Ak and Aw:

= Ak is small: the effective wavenumber of this modulating function is
small, which means the effective wavelength of this modulating function is long.

= Aw is small: the effective frequency of this modulating function is small,
which means it has a long period.

At AR, R
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= The reconstructed signal we obtained is the original wave modulated by this envelope term,
which has a very long wavelength and a very long period. This is the modulating packet. That is the
modulating packet is also propagating because this term (2 cos(Akx — Awt)) is also a waveform
describing a longer wave with a lower frequency.

= We can work out the effective speed of the modulating envelope. The speed at which a
packet will move. This is the ratio of the angular frequency to the wavelength (see #WAVES1.2d or
#WAVES1.2f) of the modulating packet:

cg = Aw/Ak
% If we take the limit where A becomes very small, we can actually express this as a function:
Jw

~ ok
This is the group speed, and this is a general property of waves.

Cg
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WAVESI1.4: Dispersion relation

= The phase speed, the speed at which an individual wave will propagates (c = w/k), and the
group speed, the speed at which information/energy propagates (cg = Ow/0dk), are both a function
of the wavenumber (k) and the frequency (w).

% The relationship between frequency and wavenumber (w = f(k)) is called the dispersion
relationship.

1.4.a) Dispersion

= w/k and dw/dk are not necessarily equal for all values of k.

% If the phase speed, w/k, or the group speed, dw/dk, varies with the spatial scale of the
wave (the wavelength A or the wavenumber k = 2 /4), then there will be some complex interesting
behaviours.

If the phase speed depends on the spatial scale, it means that some wavelengths might go
faster than others. This is dispersion.

oW1 We might have a dispersive system in which short waves go slow, and long waves go

fast.

% In this case, what would happen to a wave that was a mixture of short and long waves?
The long waves would all go pretty fast and the short waves would go slower.

= This is illustrated below. Imagine, you are on a boat, out at sea. At some distance, there is a
storm that generates waves. These waves are a mixture of long and short waves propagating in your
direction:

* The first thing that arrives is a long swell associated with the long waves
that arrive first. It is not a very comfortable feeling and you may feel sick.

= Over the next few days, you see the sea-surface all choppy and disturbed
because the short waves have finally arrived, the long waves are long gone.

% The wavelengths get dispersed, they get separated. It is dispersion.

Day 0: Far away, a storm forces long and short waves...

Day 1: The long waves arrive first...

Day 3: The short waves arrive later.

% This is what happens for deep-water waves (see #WAVES2.3e).
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o.\3F.: In contrast, we might find a dispersive system where short waves go faster
than longer waves.

(. X!: Finally, we might have a system in which the short waves and the long waves propagate
at the same speed. This means that the phase-speed (c) is a constant, independent of the wavelength
or the frequency. All wavelengths and all frequencies have the same speed.

% In this particular case, the relationship between w and k is linear. We have:
do  w
ok k@
% This system is called non-dispersive. The dispersion relation is linear (w = ck) and passes
through the origin (w = 0 when k = 0).

=

1.4.b) Dispersion diagram

= We represent the relationship between frequency and wavenumber (w = f(k)) on a
diagram. This diagram is called a dispersion diagram.

= The horizontal axis is the wavenumber (k = 2w /A7),

w = f(k) ranging from small wavenumbers (long waves) to
large wavenumbers (short waves).

= The vertical axis is the frequency (w = 2 /T)

% If we know the physical system, we know the
relationship between w and k. We can plot it as a curve
on the dispersion diagram by assigning a value of w to
each value of k. We can then calculate the phase speed
and the group speed for any wavelength.

%, On this graph:

angular frequency (rad/s)

ber (rad . .
it . k -» the phase speed (c) is the arrow that points from the
n-n . W
Long waves Short \ origin toward the curve (the ratio E)

- the group speed (c,) is the tangent to the curve (Z—c;)

= Below are dispersion diagrams with the 3 dispersion curves illustrating the 3 cases
mentioned previously (in #WAVES1.4a).
e Non-dispersive waves: This is the case of boundary Kelvin waves (see #WAVES3.3).

S In this case, the relationship between w and k is linear and its representation on the
dispersion diagram is a straight line.

~» For any value of k, the slope of the curve, i.e. the ratio w/k remains constant. It is equal to
the phase speed of the waves, which is constant (for all k). For long waves (small k), w is small, and
for (larger value of k), the frequency is proportionally larger.

~» The slope of the curve is also equal to the group speed dw/dk (¢, = c).

w
Non-dispersive
(c = cy)
For non-dispersiye waves, gff
------------------------------- | ;he Wavelengths Propagate qt
f the same Speed. A waye pattern
; (‘sum of different Wavelength)
m 5 will not change jts shape during
| E& - ; Its propagation
1y i
ikl h >k
— R
Long waves
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¢ Dispersive waves, for which long waves go faster than short ones: This is the case for deep-
water waves (see #HWAVES2.3e).

w -+ For any value of k, we look at the ratio

y w/k to estimate the phase speed. It is the slope
from the origin of the diagram (0,0) to any point

Deep water waves on the curve (in dark red in the dispersion
diagram on the side). And, the phase speed
changes as the waves get shorter.

30 15 Cg % For deep-water waves, the larger the
Te“gan"n"sc ‘ wavenumber, the smaller the ratio w/k: long
waves propagate faster than short waves.

W frmmmmmmmmmm ey Dispersive
(c>cy) -> To estimate the group speed

iRatiowl isc
] T a . .
5 k1 (cg = ﬁ), we draw the tangent to the dispersion

k

[ k, curve (in green in the dispersion diagram on the
Long waves side).

(0,0)

% For any value of k (long waves and short waves), the group speed of deep-water waves is
less than the phase speed. As a result, the modulation packet propagates slower than the individual
wave crests, and the individual crests propagate through the packet, amplifying and then going out in
the front and fading away (see #WAVES1.3b).

% The group speed is also a function of the wavelength. For deep-water waves, the group
speed associated with long waves is larger than for short waves.

= This is normal dispersion.

% In #WAVES2.3e, we will see that for deep-water waves, the group speed is half of the phase
speed.

e Dispersive waves, for which short 4 Dispersive
waves travel faster than long ones: In such a (c <cy)
physical system, the group speed is larger than
the phase speed. So, the group packets propagate
faster than the individual waves.

% It is a rather unusual behaviour. This is
the case of capillary waves, the tiny ripples on the
surface of the water, for which the restoring
forces is the surface tension.

These dynamics are beyond our scope of
interest for this course.

Long waves

Throughout the course, we will derive dispersion relations for different types of ocean
waves (for deep and shallow-water surface gravity waves in #Chapter2, for some geophysical waves in
#Chapter3, and for internal waves in #Chapter4).
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