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O C E A N O G R A P H Y

Predicting Atlantic and Benguela Niño events with 
deep learning
Marie-Lou Bachèlery1,2*, Julien Brajard3, Massimiliano Patacchiola4,  
Serena Illig5,6, Noel Keenlyside1,3,7

Atlantic and Benguela Niño events substantially affect the tropical Atlantic region, with far-reaching consequenc-
es on local marine ecosystems, African climates, and El Niño Southern Oscillation. While accurate forecasts of 
these events are invaluable, state-of-the-art dynamic forecasting systems have shown limited predictive capabili-
ties. Thus, the extent to which the tropical Atlantic variability is predictable remains an open question. This study 
explores the potential of deep learning in this context. Using a simple convolutional neural network architecture, 
we show that Atlantic/Benguela Niños can be predicted up to 3 to 4 months ahead. Our model excels in forecast-
ing peak-season events with remarkable accuracy extending lead time to 5 months. Detailed analysis reveals our 
model’s ability to exploit known physical precursors, such as long-wave ocean dynamics, for accurate predictions 
of these events. This study challenges the perception that the tropical Atlantic is unpredictable and highlights 
deep learning’s potential to advance our understanding and forecasting of critical climate events.

INTRODUCTION
Atlantic and Benguela Niño and Niña events are extreme climatic 
phenomena of the tropical Atlantic. Marked by anomalous interan-
nual oceanic warming/cooling in the eastern equatorial Atlantic and 
southwestern coastal African regions (Fig. 1A), respectively, these 
events not only influence regional precipitation and climate patterns 
(1–4) but also play a substantial role in the coastal oxygen variability 
(4–7), fish habitat, and marine resource distribution/abundance. At-
lantic Niño events also influence the Pacific El Niño Southern Oscil-
lation (8, 9). Therefore, operational forecasting of these events could 
be greatly beneficial to local ecosystem management and climate 
services globally.

It is particularly interesting and troubling that compared to the 
Pacific and despite notable efforts (10), there has been limited suc-
cess in predicting these interannual events (11–15) to support man-
agement strategies. State-of-the-art dynamic forecasting systems 
even struggle to beat persistence—the most common benchmark—
and to achieve statistical significance (Fig. 1, B and C). They com-
pletely failed in predicting the exceptionally strong 2021 events (15). 
This has led to a growing consensus that such events are inherently 
unpredictable (11, 16–19, 20, 21).

Unlike the Pacific El Niño, the main challenge in forecasting the 
tropical Atlantic (18) is the notably weaker interannual variability 
compared to the seasonal cycle. In addition, systematic model biases 
in the tropical Atlantic affect atmospheric and oceanic dynamics 
(20, 22–24) and may account for this lack of predictive capabilities. 
However, the difficulty in predicting Atlantic and Benguela Niño 
events goes beyond model bias (11, 20, 25), likely because of their 
complex dynamics, with nonlinear processes and interplays of 

oceanic and atmospheric connections (26–29). Although they peak 
in different seasons (Atlantic events in June-July and Benguela events 
in March-April-May), their developments are inextricably linked. 
Variations in the South Atlantic anticyclone induce anomalous 
coastal winds affecting the southwest African upwelling and initiat-
ing Benguela Niños/Niñas off the African coast (28–31). Simultane-
ously, the South Atlantic anticyclone variations trigger wind stress 
anomalies in the western part of the basin that prompt equatorial 
Kelvin waves and subsequent coastal trapped waves, influencing the 
equatorial (32–35) and coastal African ocean conditions (36–41). 
However, while the oceanic connection contributes to a major part of 
the Atlantic and Benguela events (41–44), as the events mature, 
strong air-sea interactions develop between the two events, either in-
tensifying or attenuating them (15, 26, 29). Major nonlinearities arise 
from the Bjerknes feedback (45) controlling the Atlantic Niños, with 
the surface-subsurface coupling in the eastern equatorial basin 
strongly tied to the seasonal cold tongue development. Also, the 
ocean-atmosphere coupling is strongly modulated by the march of 
the Intertropical Convergence Zone (46). Capturing the complex 
mechanisms and nonlinear processes intrinsic to both the Atlantic 
and Benguela events in dynamic prediction systems is a challenge 
and may explain their lack of skill for these events.

While forecasting Atlantic and Benguela Niños/Niñas seems to 
be at an impasse, the strong connection between both events through 
linear oceanic wave propagations originating from the western equa-
torial Atlantic has the potential to offer predictability of up to 2 
months (42). Moreover, their relationship with the South Atlantic 
anticyclone might provide extended predictability if the latter is tied 
to El Niño Southern Oscillation, for instance. Furthermore, recent 
advances in deep learning offer a promising avenue for improved 
prediction of such events. Deep learning techniques (47), particu-
larly the application of convolutional neural networks (CNNs), have 
demonstrated remarkable capabilities in weather forecasting by 
capturing complex patterns and deciphering intricate relationships 
within data. For example, using a CNN model, Ham et al. (48) have 
shown excellent improvement in the seasonal prediction of El Niño 
events. Here, we investigate whether a deep learning algorithm, such 
as a CNN, can predict Atlantic and Benguela Niño/Niña events.
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RESULTS
Assessing the predictability of Atlantic and Benguela 
Niño indices
Herein, we develop a CNN model to generate seasonal predictions of 
two indices of Atlantic and Benguela Niño variability (Fig. 1A): the 
Atlantic Niño index (ANi) and Benguela Niño index (BNi) defined as 
interannual sea surface temperature (SST) anomalies averaged in the 
eastern equatorial sector [ATL3 (49): 3°N-3°S/20°W-0°E] and in the 
coastal Angola/Benguela [CABA (28): 10°S-20°S/2°-wide coast-
al band]. The architecture of the CNN statistical model resembles the 
one described by Ham et al. (48). While other deep learning architec-
tures have also proved to be skillful, especially for weather forecasts 
(50), here, we use a simple, tailored scheme. This approach will help us 
explore the potential predictability of tropical Atlantic interannual 
variability and its extreme events, offering another perspective com-
pared to traditional dynamic model predictions, even with a relatively 

simple implementation. The CNN model generates monthly forecasts 
for each index, targeting each month of the year with a lead time rang-
ing from 1 to 12 months. As previously highlighted, interannual SST 
anomalies in the eastern equatorial and southwest African coastal re-
gions are closely linked to long-wave propagation. Equatorial Kelvin 
waves and subsequent coastal trapped waves induce substantial chang-
es in vertical and horizontal currents, leading to temperature anoma-
lies within the first 100 m and sea level fluctuations in the eastern 
equatorial basin (27, 28) and off the African coast (36, 37, 41). There-
fore, the CNN model uses as predictors (input data) maps of monthly 
interannual surface (SST) and vertically integrated (top 100 m) tem-
perature anomalies over the tropical Atlantic region (15°N-30°S/50°W-
20°E). Subseasonal variability has been removed from the predictors 
(see Methods) to reduce the high-frequency variability and focus the 
CNN model on the interannual variability, which is the most relevant 
for predicting the events. Furthermore, we use sequences of maps of 

Fig. 1. Prediction performances of state-of-the-art C3S dynamic systems and our deep learning model. (A) Map of ORAS5 interannual SST anomalies (°C) during the 
2021 Atlantic and Benguela Niño events (May-August 2021). The ANi (20°W-0°E/3°S-3°N) and BNi (10°S-20°S/2°-wide coastal band) domains are outlined in white and 
black, respectively. (B) ANi correlation as a function of lead time (months) for the CNN deep learning model (orange) and the C3S prediction models (blue and green 
colors). The orange shading shows the highest and lowest correlations estimated over 20 ensemble members of the CNN model. Persistence is shown in black, and the 
statistical significance threshold [>99%, estimated using a red noise significance method (83); see Methods] is indicated by the black horizontal line. The evaluation period 
is 1995 to 2016, and all models are compared with ORAS5. (C) Same as (B) for the BNi.
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both variables during three consecutive months before the forecast 
start date (see Methods) to depict propagating features and capture the 
evolution of the interannual events. We train the model using 90 years 
of reanalysis data from 1900 to 1991. The performances of the CNN 
model are tested against the Ocean Reanalysis System 5 [ORAS5 (51)] 
dataset covering 1995 to 2016. This period aligns with available sea-
sonal predictions from dynamic forecasting systems used for compari-
son with the CNN seasonal prediction skills.

The CNN model reveals great success in predicting ANi and BNi 
variability in terms of both correlation (Fig. 1, B and C) and root 
mean square error (RMSE; fig. S1 in the Supplementary Materials). It 
demonstrates predictability extending up to 4-month lead for ANi 
and 3-month lead for BNi, with correlations surpassing both the per-
sistence (0.39) and statistical significance (0.34). At lead 1, remark-
ably high correlations of 0.93 (ANi) and 0.88 (BNi) are achieved, 
gradually decreasing to 0.5 at lead 4 (ANi) and lead 3 (BNi). Com-
pared with the BNi variability, which is influenced by competing lo-
cal and remote equatorial processes, the ANi variability is more tied 
to the fully coupled system associated with the Bjerknes feedback. 
This distinction may account for the higher skills and 1-month-longer 
forecast horizon observed for ANi compared to BNi.

The CNN model forecasting skills clearly surpass those of the 
eight state-of-the-art seasonal prediction systems used operation-
ally for the Copernicus Climate Change Service [C3S (52)]. Note 
that in this comparison, the forecast lead time follows the conven-
tion of Ham et al. (48) and Ling et al. (53) (see Methods). The CNN 
model demonstrates a superior forecast skill in terms of correlation 
(Fig. 1, B and C) and RMSE (fig. S1 in the Supplementary Materi-
als) for both indices. Although the relatively recent C3S prediction 
systems exhibit a substantial improvement in predicting the ANi 
compared to the existing literature (12, 14, 15, 20), none show cor-
relation skills exceeding persistence within a 4-month lead for the 
Atlantic Niño. The models are even less skillful in predicting the 
Benguela variability.

To account for which month contributes the most to the all-
season correlation skills (Fig. 1), we decomposed correlations into 
their monthly normalized covariance contributions (see Meth-
ods). The CNN model predicts the variability of the Atlantic and 
Benguela Niño/Niña indices particularly well during their respec-
tive peak seasons (Fig. 2), indicating skills in forecasting the onset, 
evolution, and demise of both events. In the equatorial basin, our 
monthly normalized covariance decomposition of the CNN model 
reveals higher performances (above persistence and statistically 
significant monthly correlations) at 5-month lead time during the 
June-July period (Fig. 2B), which is associated with the highest ANi 
variability (Fig. 2A). Good monthly correlation skills are also found 
from November to March. This season is characterized by a second-
ary peak of variability (Fig. 2A), most likely associated with the 
occurrence of Atlantic Niño II events (54). In the Angola/Benguela 
sector, the CNN model (Fig. 2E) shows significant monthly normal-
ized covariances above persistence at leads 1 and 2 only from March/
April to July. As persistence drops beyond lead 2 (Fig. 1C), the pre-
dictability extends to the months from January to July, the period 
characterized by strong BNi variability (Fig. 2D) and increased oc-
currence of Benguela Niño events. Notably, in March-April, the 
monthly normalized covariances are the highest, with significant 
values achieved up to 11-month lead. The skills remain low in 
August-September-October. This season shows the lowest BNi vari-
ability (Fig. 2D) with very few extreme events, which could explain 

why the CNN model did not learn properly. Furthermore, this 
season is most likely dominated by stochastic atmospheric forcing 
(wind and heat fluxes), making it impossible for the CNN model to 
predict. These two aspects suggest that the summer season is char-
acterized by a low signal-to-noise ratio, which reduces predictability 
as suggested by Li et al. (15). In addition, a separate monthly nor-
malized covariance decomposition for SST and 100-m-averaged 
temperature (fig. S2 in the Supplementary Materials) clarifies their 
respective contributions to the predictive skill. As expected, SST is 
the most influential, in particular at shorter leads (1 to 2 months). 
For Benguela events, the 100-m-averaged temperature steadily gains 
importance at longer leads, whereas for Atlantic events, SST remains 
consistently dominant, supplemented by notable temperature con-
tributions in specific seasons of the year and notably around the 
peak in June-July.

It is worth noting that the CNN model shows higher covariances 
for almost all months compared to the C3S seasonal prediction sys-
tems. The improvement is particularly evident for the ANi (Fig. 2C 
and fig. S3 in the Supplementary Materials). For the BNi, the C3S 
models have their best significant covariance skills from January to 
April, with some of the models outperforming the CNN model from 
lead 3 but showing lower skills for the rest of the months (Fig. 2F 
and fig. S6 in the Supplementary Materials). The accuracy of the am-
plitude of the variability of both indices is also substantially im-
proved in the CNN model compared to the dynamic system, as 
illustrated by the monthly decomposition of the RMSE (figs. S3, S6, 
and S7 in the Supplementary Materials). Results show that within 
the first 3-month lead, the seasonal RMSE remains below 1 for all 
the months for the CNN model, which is largely superior to the 
skills of any dynamic system.

Beyond the fact that the CNN outperforms predictions made 
by dynamic systems, the most notable result is that the interannual 
variability in the eastern equatorial Atlantic and off the Angola/
Namibia coast can be forecasted with sufficient lead time to be useful 
for management services, demonstrating the predictability of these 
events using a relatively simple statistical approach.

Benguela Niño and Niña events
While the CNN model shows good skills in predicting interannual 
variability, the true significance lies in its capability to forecast 
events. We demonstrate this by considering Benguela Niño/Niña 
events, which are categorized when the BNi exceeds 1 standard de-
viation (SD) for two consecutive months (Fig. 3A) (39,  40). The 
modulation of upwelling during Benguela Niños/Niñas not only 
affects surface temperature but also controls primary production, 
with negative/positive cascading effects on primary production (7) 
and the reproduction of pelagic fish. A deeper evaluation of the per-
formances of the CNN model underscores its ability in forecasting 
interannual events compared to normal years.

Overall, both CNN and dynamic systems can predict the occur-
rence of events with reasonably high accuracy (Fig. 3B). However, the 
CNN model shows a greater ability in averting false alarms (fig. S8 in 
the Supplementary Materials), thereby enhancing its credibility in an-
ticipating the onset of the events and providing valuable insights for 
decision-makers. The CNN model achieves F1 scores (a composite 
metric of recall and precision; see Methods) of 0.72, 0.56, and 0.43 for 
leads 1, 2, and 3, respectively, and remain above persistence skills. 
Note that differences are significant if larger than 0.11 (see Methods) 
at leads 1, 2, and 3. Comparison of the CNN model’s F1 scores with 
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dynamic systems reveals its superiority in predicting events within 
the first 3-month leads. At lead 3, the recall of CNN is comparable to 
that of the other dynamic models [such as European Centre for Me-
dium Range Weather Forecasting (ECMWF), CMCC, and UKMO; 
fig. S8 in the Supplementary Materials]. Meanwhile, dynamic systems 
predict events more often than observed, resulting in increased false 
alarms and reduced precision (fig. S8). This discrepancy is also evi-
dent in the false positive rate (false positive predictions among total 
model predictions), with notably lower values for the CNN model for 
leads 1 to 3, indicating its superior performance. In addition, dynam-
ic systems occasionally predict warm events in cold scenarios and 
vice versa, a bias not reported for the CNN model predictions.

Notably, the CNN model exhibits superior predictive capabilities 
for anticipating Benguela Niñas compared to Benguela Niños with-
in the 3-month leads. This contrast is particularly pronounced in 
lead 3, where the F1 score for Benguela Niños is only 0.22 compared 
to 0.65 for Benguela Niñas. This asymmetry suggests potential dif-
ferences in the phenology of the Benguela Niño and Niña events. It 
is noteworthy that Benguela Niña subsurface temperature anoma-
lies penetrate the surface layer more easily than those of Benguela 
Niños, because upwelling waves are associated with a shoaling of the 
coastal thermocline. This implies better agreement between SST and 
vertically integrated subsurface temperature and relation to equato-
rial variability, potentially enhancing predictability.

Fig. 2. Monthly prediction performances of the deep learning and ECMWF models. Monthly normalized covariance skills for the Atlantic Niño (top panels; A to C) and 
Benguela Niño (bottom panels; D to F) indices. (Left) Monthly SD of ORAS5 (°C) for the ANi (A) and BNi (D). Normalized covariance decomposition (see Methods) as a func-
tion of the lead time (months) for the CNN deep learning model [middle; (B) and (E)] and the ECMWF dynamic model [right; (C) and (F)]. The evaluation period is 1995 to 
2016, and all models are compared to ORAS5. Statistically significant values [>99%, estimated using a red noise significance method (83); see Methods] are indicated by 
the red color bar. Monthly significant covariance values above persistence are marked by a black point.
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Precursors of the Atlantic and Benguela Niño/Niña events
Beyond its success in prediction, deep learning can be a valuable 
tool for analyzing the complex dynamics and phenology of climate 
extremes. To investigate hotspots within precursors, especially dur-
ing the onset of an event, we computed gradient sensitivity (or heat-
maps; see Methods) for Atlantic and Benguela events with a lead 
time of 3 to 1 months (Fig. 4). Heatmaps of the gradients highlight 
the regions of importance within the predictors when computing 
the CNN model weights. Higher values highlight the location where 
predictors make a larger contribution to the predictands. The skill in 
predicting Atlantic Niño events is connected to westerly wind bursts 
and increased equatorial heat content that occur 3 to 4 months prior 
that are redistributed through planetary equatorial wave dynamics 
to off-equatorial regions (29, 55). We illustrate this by examining the 
skillful prediction of the 1996 Atlantic Niño event, which peaked in 
June and was the strongest event over 1995–2016. The heatmaps 

identify the importance of precursor heat content signals in the east-
ern and western equatorial Atlantic at 3-month lead, matching both 
the buildup of equatorial heat content and the impact of westerly 
wind anomalies in the west (Fig. 4A). There are signatures of coastal 
trapped waves along the west African coast at 2-month lead (Fig. 
4B) and of the reflection of equatorial Kelvin waves into equatorial 
Rossby waves at 1-month lead (Fig. 4C). These features coincide 
with the redistribution of equatorial heat content and further warm-
ing in the east. A specificity of the 1996 Atlantic Niño is its connec-
tion to the cold conditions in the tropical Pacific (28, 56). In late 
1995/early 1996, changes in the Atlantic Walker circulation, charac-
terized by anomalous subsidence over South America, led to en-
hanced westerlies that forced downwelling equatorial Kelvin waves. 
At 3-month lead (Fig. 4A), the heatmap captures precursors in the 
western part of the equatorial basin, hugging the South American 
coasts, which is consistent with this storyline.

Fig. 3. Skills for predicting the occurrence of Benguela Niños/Niñas. (A) BNi time series (°C) for the CNN model predictions (orange) at lead 1. Predictions are compared 
with ORAS5 (black) over the validation period (1995 to 2016). (B) F1 score (see Methods) for BNi events using the CNN model, the persistence (ORAS5), and the C3S dy-
namic prediction systems compared with ORAS5. F1 scores are assessed for leads 1 (left panel) to 3 (right panel) for Benguela Niño (yellow dots), Niña (blue dots), and both 
events combined (black bars). Contour colors correspond to the color of each model in Fig. 1B. Events are selected when their amplitude exceeds 1 SD for two con-
secutive months.
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Equatorial wave dynamics also served as an important precursor for 
skillful predictions of Benguela Niño/Niña events, as shown for the 
2001 event (Fig. 4, D to F). The CNN nicely predicts this well-
documented event, which peaked in May (38, 41, 43) (Fig. 3A). At the 
1-month lead (Fig. 4F), the heatmap reveals the importance of the 
Angolan and Namibian coast, the region of occurrence of the Benguela 
Niño/Niña events. One month before (at lead 2; Fig. 4E), the area of 
importance extends equatorward, north of the Angola-Benguela coast-
al region, and along the equator, highlighting the equatorial and coastal 
waveguides. Last, at lead 3 (Fig. 4D), the heatmap captures that precur-
sors originate from temperature anomalies in the west-central equato-
rial basin, where initial equatorial Kelvin waves are generated.

The predictability of each Benguela or Atlantic event may arise 
from different regions in the precursors, activated by distinct external 
forcings that are reflected in the hotspots depicted by the heatmap 
analysis. For instance, the heatmaps of the 3-month lead forecasts 
(Fig. 4D) not only highlight the west-central equatorial basin as an 
important region for the prediction of the coastal warming in May 
2001 but also depict the central south tropical basin. Variations in the 
position and the amplitude of the South Atlantic high-pressure sys-
tem most likely trigger changes in the wind circulation, evaporation, 
and consequently, temperature in the central basin. These results 
therefore underscore the importance of the South Atlantic high-
pressure system as a driver of the Benguela events and point to it as a 
good potential predictor for improving their forecasts. Resolving the 

deficiencies of dynamic models in capturing the South Atlantic anti-
cyclone (57, 58) might thus play a key role in achieving a more accu-
rate representation of the dynamics of the south tropical Atlantic 
(59). Other examples illustrating the diversity among events include 
the Benguela Niños documented to be initiated by local wind stress 
anomalies along the west African coast, potentially associated with 
changes in the South Atlantic anticyclone (27–30) or associated with 
change in salinity near the Congo river (60, 61). Remarkably, this pe-
culiar dynamic was also well captured when analyzing the physical 
precursor from CNN model predictions, with 3-month predictions 
having their hotspots of predictability located in the central basin, 
extending to the tip of the African continent or near the Congo 
mouth (fig. S9 in the Supplementary Materials).

Forecasting the 2021 Atlantic and Benguela Niño events
In the context of this study, the effective development of predictions 
for Atlantic and Benguela Niños and Niñas represents an opportu-
nity to establish a warning system for vulnerable communities. To 
achieve this, it is essential to automate the forecasting process using 
the latest available data and to make the forecasts easily accessible on 
the internet. This section outlines an attempt to realize this vision, 
with the goal of providing real-time, freely available forecasts to em-
power communities in anticipating and preparing for these extreme 
climatic events. The 2021 Atlantic and Benguela Niño events, owing 
to their substantial magnitude, impact, and interest in the scientific 

Fig. 4. CNN predictor hotspots for the 1996 Atlantic Niño and 2001 Benguela Niño forecasts. (Top) Heatmaps for the June 1996 Atlantic Niño forecast at (A) lead 3 
(i.e., using precursors from January-February-March), (B) lead 2 (i.e., with precursors from February-March-April), and (C) lead 1 (i.e., with precursors from March-April-
May). (Bottom; D to F) Same for the May 2001 Benguela Niño forecast.
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community (15, 29, 62), are used here as a case study. The 2021 At-
lantic Niño event, which peaked in July, was the warmest equatorial 
event since 1982 (29), substantially affecting rainfall over African 
countries and India (63). Concurrently, the intensity and late onset 
of the May 2021 Benguela Niño yielded the weakest boreal summer 
primary production off Angola since 2002 (64).

To develop predictions of recent events (including the 2021 events), 
we use the CNN model here with predictors from the observation- 
based ARMOR3D dataset. Compared to reanalyses used to train 
and evaluate the CNN model, ARMOR3D is a dynamically updated 
dataset, incorporating the latest near- real-t ime altimetry maps. 
This allows for operational utilization in developing a pioneer-
ing web- based warning system for both the eastern equatorial and 
southwestern African regions. It also allows the introduction of 
an additional and entirely new source of data to test the forecast 
performances of our deep learning model. The CNN model accu-
rately predicts the equatorial event 4 months in advance, and the 
amplitude of the ANi forecasts effectively matches well with the 
observations (Fig. 5A). Despite the CNN model’s lower success in 
predicting the June/July BNi, it accurately predicts the Benguela 
warming 1 and 4 months in advance (Fig. 5B). The timing of the in-
terannual BNi forecasts closely resemble that of the satellite observa-
tions, although there is an underestimation of the amplitude of the 
June/July events in both 2020 and 2021. Li et al. (15) showed that the 
state- of- the- art dynamic prediction systems did not capture the oc-
currence of the 2021 Atlantic and Benguela Niño events. In contrast, 
our accurate tropical Atlantic forecasts using ARMOR3D data instill 
confidence in the CNN model’s capabilities, support its potential for 
operational forecasting, and offer promising avenues for the 
moni-toring of critical marine ecosystems.

DISCUSSION
Decades of intensive research have been dedicated to enhancing 
predictions for the tropical Atlantic. However, as for now, the Atlan-
tic and Benguela Niños remain poorly predicted using dynamic sea-
sonal prediction systems. This study presents the potential of deep 
learning in the prediction of the tropical Atlantic interannual vari-
ability and the Atlantic and Benguela Niño/Niña events. Results 
show that the CNN model developed herein provides reliable fore-
casts for both events up to 3 months ahead, surpassing the skills of 
state-of-the-art dynamic forecasting systems. The progress achieved 
using deep learning is higher for the Atlantic index than for the 
Benguela index.

While our CNN model demonstrates good predictive capabili-
ties, its interpretability remains a challenge. By their very nature, 
deep learning models make it difficult to fully understand the un-
derlying mechanisms driving the predictions. However, the increased 
prediction skill of the CNN model might arise from its ability to learn 
complex spatial and temporal patterns in the data that serve as pre-
cursors to Atlantic and Benguela Niño events. By learning directly 
from preprocessed observational data, the CNN model can over-
come some of the recurring errors in global climate models, such as 
biases and erroneous variability. Also, by not relying only on explicitly 
modeled physical processes, the CNN model can bypass systemic 
issues related to parameterizations and resolution constraints, po-
tentially capturing subtle signals and nonlinear relationships that 
are not well represented in dynamic models.

Analyzing the gradient sensitivity of the CNN model enables one 
to address the challenge of interpretability and identify the potential 
precursors and intricate mechanisms influencing the tropical Atlantic 
predictability across different lead times. The predictability of both 

Fig. 5. 2021 Atlantic and Benguela Niño forecasts. (A) Forecasts of the ANi (°C) using the CNN model from lead 1 (deep orange) to lead 4 (light orange). Forecasts are 
estimated from and compared to the Copernicus ARMOR3D datasets. (B) Same as (A) but for the BNi.
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events arises from well-documented mechanisms, predominantly 
associated with long-wave dynamics. Temperature signals associ-
ated with changes in the South Atlantic anticyclone are also cap-
tured as a notable precursor to the Benguela events, potentially 
extending their prediction horizon further. Identifying these pre-
cursors is essential first for validating the CNN model’s credibility. 
It can help understand why dynamic seasonal prediction systems 
are deficient, providing clues on mechanisms not well represented 
within them.

While this study represents a substantial step forward in the ap-
plication of deep learning for climate prediction, there is an ample 
room for improvement. First, the relatively short validation period 
(1995 to 2016) may limit the assessment of the model’s robustness, 
and when possible, future studies should evaluate the CNN model 
over longer periods to confirm and enhance its predictive capabili-
ties as the model’s skill may vary when applied to different periods 
or under different climatic conditions. Nevertheless, the lightweight 
and computationally efficient design of the CNN model allows for 
easy retraining with the most recent data. This capability enables the 
model to continually update and potentially improve its predictive 
accuracy, thereby remaining relevant for operational use. Second, 
because the objective was to assess the potential of predictability of 
the Atlantic and Benguela events rather than to design a distinct 
deep learning architecture, the CNN model developed here remains 
relatively simple and can be further refined and enhanced. A notable 
limitation is the scarcity of data available for training the model, 
which often constrains its predictive capabilities. Very popular, 
transfer learning techniques can augment data volume, potentially 
enhancing the CNN model’s performance. We explored transfer 
learning by initially training the model on CMIP6 hindcasts before 
fine-tuning it with reanalysis data. However, the CMIP6 models ex-
hibit poor qualities in simulating the tropical Atlantic interannual 
variability and, particularly, the characteristics of the Benguela 
events, thereby degrading the forecast accuracy. Although transfer 
learning could not be applied here, the rapid evolution of machine 
learning techniques should continue to offer promising avenues for 
improving the model’s skills. Future work may also involve explor-
ing more complex neural network architectures, such as ConvLSTM 
(65, 66), multimodal approaches (67), and transformers and atten-
tion mechanisms (68–70), optimizing hyperparameters, or integrat-
ing an extreme-focused loss function, which applies extra penalties 
to extreme events (71–74), to improve predictive accuracy and 
further enhance the model’s ability to forecast the Atlantic and 
Benguela Niño events. In addition, incorporating additional climate 
data sources, variables (wind patterns or sea level pressure), or ex-
ternal drivers (climate indices such as ENSO and/or the Indian 
Ocean Dipole) as compact representations of remote influences 
could substantially improve the model’s ability to capture the phe-
nology of the events and extend prediction horizons.

METHODS
Design of the CNN model
A CNN is designed for image analysis (47). It consists of multiple 
convolutional, pooling, and fully connected layers. Herein, the CNN 
statistical model’s architecture resembles the one described by Ham 
et al. (48). It is built upon three convolutional layers interspersed by 
two max pooling layers. The last convolutional layer is connected to 
neurons in the fully connected layer, which, in turn, is linked to the 

final output. Both the total numbers of convolutional filters and 
neurons in the fully connected layer are set to 30. During the train-
ing process, a minibatch size of 20 is used for each epoch and the 
model undergoes 125 epochs. We define learning as a regression 
problem, with the dimensionality of the input set to a height of 64, a 
width of 44, and six channels for the input images. The optimizer 
used is RMSProp with default hyperparameters (betas  =  0.9 and 
0.999; epsilon = 1 × 10−7). The learning rate remains fixed to 5 × 
10−5. A dropout rate of 0.25 is applied to prevent overfitting. Note 
that apart from the optimizer, the hyperparameter settings were 
adapted from the architecture by Ham et al. (48) as they demon-
strated an improved predictive skill. A targeted hyperparameter 
tuning study, including a comparison of optimizers (RMSProp, 
Adam, and Nadam), was conducted to further ensure that the cho-
sen settings are among the best possible combinations for our study 
(figs. S10 and S11). The full details of this hyperparameter tuning 
analysis are provided in the Supplementary Materials.

Central to the CNN framework, the convolutional process in-
volves the systematic application of small learnable filters to input 
data. These filters slide over the data, performing element-wise mul-
tiplications and producing a feature map that highlights relevant 
patterns. This process captures hierarchical features, enabling the 
network to progressively acquire informative representations. The 
resulting feature maps are subject to nonlinear activation functions 
and optional pooling operations, contributing to the network’s abil-
ity to learn and generalize from input data. As by Ham et al. (48), a 
hyperbolic tangent activation function is used in the CNN model. 
Filter dimensions are defined as 3 by 3 for all the convolutional lay-
ers. Padding is used to fill vacant spaces with zeros, preserving the 
feature maps’ dimensions intact.

Forecasts of the Benguela Niño/Niña index (BNi) and Atlantic 
Niño/Niña index (ANi)
The CNN model is designed to forecast the ANi and BNi (predictands). 
The ANi corresponds to the interannual SST anomalies averaged 
over the eastern equatorial Atlantic [ATL3 box (49): 20°W-0°E/3°S-
3°N]. The BNi is defined as the interannual SST anomalies averaged 
along the coast of West Africa in the Coastal Angola-Benguela area 
[CABA box (28): 20°S-10°S;2°-wide coastal band]. The CNN model 
uses monthly-averaged surface and 100-m-integrated temperature 
anomaly maps of the tropical Atlantic region (15°N-30°S/50°W-20°E) 
for three consecutive months as predictors. These data capture the 
propagation of long waves along the equator and down the west coast 
of Africa. While the sea level is traditionally used to assess long-wave 
dynamics, it provides little information associated with higher, slower 
baroclinic modes, thus offering less range (memory) to the predictors. 
Note that in the early stages of the model development, other variables 
were considered as predictors (including sea level and wind stress 
anomalies). While incorporating wind stress anomalies as a predictor 
could have helped the CNN model account for the ocean-atmosphere 
interactions and coupling between the equatorial and coastal events, it 
did not improve the prediction skill. Possible reasons include the limited 
training data and noise levels in the wind dataset, which may have 
hindered the model’s ability to learn effectively.

The CNN model generates forecasts for each “target” month of 
the year. Each forecast uses the latest monthly available data (predic-
tors). The “lead time” represents the number of months between the 
latest observed data and the target month for the forecast. For in-
stance, to produce a forecast for January with a lead time of 1 month, 
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the CNN model uses data from the three preceding months (October, 
November, and December) of the previous year. For a lead time of 2 
and a forecast for January, the model uses data from September, 
October, and November of the previous year and so on for subse-
quent lead times. The forecast target periods for all lead times and 
target months range from January 1995 to December 2016. This 
evaluation period is determined by the availability of the seasonal 
dynamic forecasting system outputs used for comparison (see the 
“Reanalyses, observed datasets, and seasonal dynamic forecasts” sec-
tion for the description of the dynamic forecast systems). To improve 
the reliability of the results, we do an ensemble learning, creating 20 
variations of the CNN model. Each of these 20 models is trained for 
every target month and lead time, resulting in a set of 20 distinct 
models for each scenario. The final forecasts are generated by taking 
the ensemble mean of these multiple model prediction estimates.

CNN heatmaps
Heatmaps generated using the Grad-CAM (gradient-weighted class 
activation mapping) (75) technique are used to assess the decision-
making process of the CNN. Gradients are extracted from the third 
convolutional layer of the trained model. These heatmaps provide a 
visual aid to understand the features and spatial regions that the 
CNN model relies on for accurate predictions, thereby informing on 
the physical precursors influencing the variability of the ANi and 
BNi. Higher gradients indicate a stronger influence of the corre-
sponding features on the variability observed in the indices.

Reanalyses, observed datasets, and seasonal 
dynamic forecasts
The CNN model is trained using maps of surface and subsurface tem-
perature anomalies from the CMCC Historical Ocean Reanalysis 
[CHORE_RL (76)] (Table 1). The reanalysis provides monthly-averaged 

outputs over the period of 1900 to 2010 at a resolution of 1/2° by 1/2° 
and uses data from the ECMWF ERA-20C historical atmospheric re-
analysis as surface forcing (77). It assimilates vertical profile data and 
is nudged to monthly Hadley Centre global sea ice and SST recon-
structed fields (78). Only CHORE_RL outputs from 1900 to 1991 
have been used for the training of the CNN model. This was done to 
ensure a sufficiently long validation period independent of the train-
ing period.

To evaluate forecast performance, we use monthly SST and sub-
surface temperature data from 1993 to the present from ORAS5 (51) 
(Table 1). The reanalysis combines model data with observations and 
provides outputs at a resolution of 1/4° by 1/4°. From 1993 to 2014, 
outputs are extracted from the consolidated product, while from 
2015 onward, the operational product is used. The consolidated and 
operational ORAS5 data differ in their atmospheric forcing and the 
ocean observations used to generate the two products.

Seasonal predictions from the eight systems of C3S (52) (Table 1) 
are used to benchmark the prediction skills of the CNN model over 
1995 to 2016 (Table 2). These state-of-the-art seasonal prediction 
systems provide monthly SST forecasts with lead times from 0 up to 
5 months at a spatial resolution of 1° by 1°. Note that the lead times 
have been defined as by Ham et al. (48) and Ling et al. (53).

Forecasts for the 2021 Atlantic and Benguela Niño events (Fig. 5) 
are generated using predictor temperature maps from the ARMOR3D 
product (79, 80) (Table 1). ARMOR3D is a 1/4° by 1/4° observation-
based product that integrates satellite data (sea level anomalies and 
SST) with in situ vertical profiles of temperature and salinity from 
Argo, CTD, XBTs, etc., using statistical methods. We used the near-
real-time ARMOR3D L4 analysis, which is based on near-real-time 
altimetry maps (81) from 2019 to 2024. Note that the climatology 
was calculated from the multiyear reprocessed ARMOR3D with data 
available from 1993 to 2022.

Table 1. Overview of the datasets. Name, types, periods, lead time, and goal of the datasets.

Name Type Period Lead time Goal

CHORE_RL Reanalysis 1900–1991 x Training set

 ORAS5 Reanalysis 1993–2022 x Test set

C3S Seasonal forecasts 1995–2016 6 months Validation

 ARMOR3D Observation-based product 2019–2023 x Prediction exercise

Table 2. Details of C3S prediction systems. Information (institution, name, system, and ensemble size) on the C3S seasonal prediction systems used in 
this study.

Institution Name System Ensemble size

Deutscher Wetterdienst DWD 21 30

Environment and Climate Change Canada ECCC 3 10

Centro Euro- Mediterraneo sui Cambiamenti Climatici CMCC 35 40

European Centre for Medium- Range Weather Forecast ECMWF seas5 51

 Météo- France Météo-France 8 25

 Japan Meteorological Agency JMA 3 10

National Centers for Environmental Prediction NCEP 2 28

 UK Met Office UKMO 600 28
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All datasets used for training, validation, and comparison with 
the dynamic forecast systems are first linearly interpolated over the 
same grid at a degree resolution of 1° by 1°. A common land mask is 
also used for all datasets.

Interannual anomalies
Interannual anomalies for all datasets are computed as by Bachèlery 
et  al. (44). First, monthly anomalies are calculated by estimating 
monthly means and subtracting the monthly climatological mean 
state. Note that for the training set, the climatology is calculated 
over the period of 1900–1991, while for the test set, the seasonal 
cycle is estimated over the period of 1993 to 2022. The climatologies 
of the dynamic prediction systems are lead time dependent. Subsea-
sonal variations are filtered out using a weighted average, with a 1-2 
decentered running weighted average applied to mitigate contami-
nation by future data as a caution by Liu et al. (82). This method-
ological choice ensures that the model focuses on the interannual 
variability, which is most relevant for predicting Atlantic and Benguela 
Niño events. Sensitivity tests show that filtering out higher-frequency 
variability considerably improves the CNN model ability to learn 
the interannual patterns associated with the events. Last, data are 
not detrended.

Forecast performance metrics
The forecasting skills of the CNN and dynamic system models are 
first evaluated for each lead time (l) against ORAS5 data by examin-
ing the correlation coefficients (Cl) and the normalized RMSE 
(RMSEl) over the entire validation period (Fig. 1 and figs. S1 and S3 
in the Supplementary Materials).

where O and P are the observed (ORAS5) and predicted ANi or BNi 
values, respectively, and l and N are the lead time and the length of 
the time series (N = 22 × 12), respectively.

Then, to evaluate the performances for the different months of 
the year (Fig. 2 and figs. S4 to S7 in the Supplementary Materials), 
the all-month correlation and RMSE metrics are broken down into 
each calendar month contribution (M). For the correlation, this in-
volves normalizing the monthly covariances by the SD of the all-
month time series such that the sum of these monthly contributions 
corresponds exactly to the all-month correlation (presented in Fig. 
1) Cl =

1

12

∑12

M=1
Cl,M and RMSEl =

1

12

∑12

M=1
RMSEl,M, with

where y, m/M, and n are the year, the month, and the number of 
years (n = 22), respectively.

The statistically significant correlation threshold at the 99% con-
fidence level is determined from the probability distribution func-
tions of 10,000 instances of the correlation coefficient between two 
red noise samples with the same autoregressive characteristics as the 
original signals (83).

To measure the success of the models in predicting Benguela 
Niño/Niña events, we estimate F1 scores, recall, precision, and false 
positive rates. The F1 score is widely used in the imbalanced classifi-
cation problem. It is the harmonic mean of the precision and recall. 
It is defined by

with precision and recall defined by

Here, TP (true positive), TN (true negative), FP (false positive), 
and FN (false negative) represent correct and incorrect detection of 
Benguela Niño/Niña events.

In addition, we calculate the false positive rate, which quantifies 
the probability of raising a false alarm. It is defined as

Note that events are categorized when the BNi exceeds 1 SD for 
two consecutive months. The significance of the F1 score differences 
between the CNN model and the average of the seasonal prediction 
systems is estimated using a bootstrap method based on the genera-
tion of 10,000 shuffled samples (84).

Supplementary Materials
This PDF file includes:
Supplementary Notes S1 to S5
Figs. S1 to S11
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Introduction:  
These supplementary materials provide extra diagnostics to assess the prediction skill 

of the CNN model compared with the C3S seasonal prediction systems (figs. S1 to S9). They 
also include details of the hyperparameter tuning analysis of the CNN model. 

 
Hyperparameter tuning of the CNN:  
The targeted hyperparameter tuning focused on the Benguela Niño index (BNi), utilizing the 
CHORE_RL dataset (1900–2010), with a 70/30 training-validation split. The study evaluated the 
CNN's performance for lead times of 1 to 4 months, which represent the model's statistically 
significant forecast horizons. Due to computational constraints, we limited the tuning to the BNi 
and tested key hyperparameters through a grid search approach, including three optimizers 
(RMSProp, Adam, and NAdam), five learning rates (0.001 to 5e-5), and four hidden feature sizes 
(10, 30, 50, 70). Other hyperparameters were kept as described in the manuscript for consistency. 
The training process resembles the one described in the manuscript. For each hyperparameter 
combination (or configuration), we performed five independent training runs and averaged the 
correlation coefficients to reduce the internal variability of the training process. Figure S10 
illustrates these averaged results, with our settings marked by the blue star, and the best-performing 
configurations marked by yellow stars. NAdam achieved the highest correlation at lead times 1 
(correlation of 0.83) and 2 (correlation of 0.54), although its performance was comparable to the 
settings used in our study (correlation of 0.82 and 0.5 for lead 1 and 2 respectively). Figure S11 
(Taylor diagram) confirms that the selected parameters yield performance closely aligned with the 
best configurations from the hyperparameter tuning. The averaged correlation (standard deviation) 
from lead 1 to 4 is 0.43 (1.07) for our settings compared to 0.46 (1.03) for the best hyperparameter 
combination. 

 

 

  



1 Supplementary Note 1: All-months Root Mean Square Error (RMSE) skills assessment 

 

Figure S1: Root Mean Square Error (RMSE) performances of state-of-the-art C3S dynamical 
systems and our deep learning model. (A) The Atlantic Niño index [ANi: 20°W-0°E/3°S-3°N] RMSE 
as a function of lead time (months) for the CNN deep-learning model (orange) and the C3S prediction 
models (green and blue colors). The orange shading shows the highest and the lowest RMSE estimated 
over 20 ensemble members of the CNN model. The evaluation period is 1995-2016 and all models are 

compared with ORAS5. (B) Same as panel (A) for the Benguela Niño index [BNi: 10°S-20°S/2° coastal 
band]. 

 

 
 
 
 
 

 
  



2 Supplementary Note 2: Monthly decomposition skills of the CNN and C3S models 
 

 
Figure S2: Variable contributions to the CNN model performances. Monthly normalized covariance 

skills for the Atlantic Niño (top panels; A to C) and Benguela Niño (bottom panels; D to F) indexes. (left) 
Monthly standard deviation of ORAS5 (°C) for ANi (A) and BNi (D). Normalized covariance 

decomposition (see Methods) as a function of the lead time (months) for the CNN deep-learning model 
with contributions from SST only (middle; B and E) and from the 100m-averaged temperature only 

(right; C and F). The evaluation period is 1995-2016 and all models are compared to ORAS5. 
Statistically significant values (>99%, estimated using a red noise significance method(86); see Methods) 
are indicated by the red color bar. Monthly significant correlation values above persistence are marked by 

a black point. 

 



 

Figure S3: Monthly performances for CNN and ECMWF models.	Monthly Root Mean Square Error 
(RMSE) decomposition skills for the Atlantic Niño (top panels; A to C) and Benguela Niño (bottom 

panels; D to F) indexes. (left) Monthly standard deviation of ORAS5 (°C) for the ANi (A) and BNi (D).  
Seasonal RMSE decomposition (see Methods) as a function of the lead time (months) for the CNN deep-

learning model (middle; B and E) and the ECMWF dynamical model (right; C and F). The evaluation 
period is 1995-2016 and all models are compared to ORAS5.  

 



 

Figure S4: Monthly normalized covariance skills of C3S for the ANi. Normalized covariance 
decomposition (see Methods) as a function of the lead time (months) for (A) DWD, (B) ECCC, (C) 

CMCC, (D) ECMWF, (E) Météo-France, (F) JMA, (G) NCEP and (H) UKMO. The evaluation period is 
1995-2016 and all models are compared to ORAS5. Statistically significant values (>99%, estimated 

using a red noise significance method; see Methods) are indicated by the red color bar. Correlations above 
persistence are shown by the black points. 

 



 

Figure S5: Monthly normalized covariance skills of C3S for the BNi. (A to H) Same as fig. S4 for the 
BNi. 

 



 

Figure S6: Monthly root mean square error decomposition skills of C3S for the ANi. Seasonal 
RMSE decomposition (see Methods) as a function of the lead time (months) for (A) DWD, (B) ECCC, 

(C) CMCC, (D) ECMWF, (E) Météo-France, (F) JMA, (G) NCEP and (H) UKMO. The evaluation 
period is 1995-2016 and all models are compared to ORAS5. 

 



 

Figure S7: Monthly root mean square error decomposition skills of C3S for the BNi. (A to H) Same 
as fig. S6 but for BNi. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

3 Supplementary Note 3: Benguela Niño/Niña events detection skills 
 

 

Figure S8: Ability to predict the occurrence of Benguela Niños/Niñas. Precision (light blue bars), 
recall (stars) and False Positive Rate (FPR; dark green bars; see Methods) for Benguela Niño/Niña events 
combined, using the CNN model, the persistence (ORAS5), and the C3S dynamical prediction systems. 
Scores are evaluated against ORAS5 for leads 1 (left panel) to 3 (right panel). Events are selected when 

the BNi amplitude exceeds 1 standard deviation for two consecutive months.  

 

  



4 Supplementary Note 4: Benguela Niño/Niña events heatmaps 
 

  
Figure S9: CNN Predictors Hotspots for the march 2016 Benguela Niño forecasts. Heatmaps at (A) 
lead 3 (i.e. using precursors from October-November-December), (B) lead 2 (i.e. with precursors from 
November-December-January) and (C) lead 1 (i.e. with precursors from December-January-February). 

  



5 Supplementary Note 5: Hyperparameters tuning analysis 
 

 
Figure S10: CNN hyperparameter tuning for the Benguela Niño index (BNi). All-month correlation 

coefficients at lead times (A) 1 month, (B) 2 months, (C) 3 months, and (D) 4 months are shown for three 
optimizers: RMSProp, Adam, and NAdam. The study includes five learning rates (LR): 0.001 (blue bars), 
0.005 (green bars), 0.0001 (purple bars), 1e-5 (pink bars), and 5e-5 (yellow bars), as well as four hidden 

feature sizes (HF: 10, 30, 50, and 70), represented by varying bar transparency from opaque to more 
transparent. The validation set spans from 1966 to 1992 using the CHORE_RL reanalysis datasets. 

Correlation values corresponding to the hyperparameter settings used in the manuscript are marked with a 
red star. The best correlation values are highlighted with a yellow star and indicated by the horizontal 

dark grey dashed line. 

 

 

 



 

 

 

 

 

Figure S11: Hyperparameter tuning for the Benguela Niño index (BNi). Normalized Taylor diagram 
summarizing the performance of the CNN model in predicting BNi, with different hyperparameters 
combinations: optimizers (symbols), learning rates (LR: colors) and number of hidden features (HF: 

transparency). All-months correlation coefficients and standard deviation are averaged over lead times 
from 1 to 4 months. The validation set spans from 1966 to 1992 using the CHORE_RL reanalysis 

datasets. 

 

 


	Bachelery_et_al_2025sciadv
	sciadv.ads5185_sm



