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2) Quasi-geostrophic theory
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Chapter 1: Shallow water and vorticity

Some concepts to discuss
rotation, stratification, 

Development, balance, nonlinearity, 

homogeneous-boussinesq-anelastic, 

barotropic-baroclinic, 

stationary-transient

The variables we use
wind/current, pressure, density...    

layer thickness, vorticity, divergence, 

streamfunction, velocity potential

The shallow water equations
coordinate transformation

reduced gravity, 

external and internal modes

Circulation and vorticity
the circulation theorem

the vorticity equation

potential vorticity



The familiar (!) equations for x and y momentum: 

notes:

Strictly speaking, if the flow is balanced then it will not develop. Not much use for prediction.

The nonlinear terms are the advection terms. A linear system can still develop through wave solutions, and 
can still transport perturbation properties with the flow.  

We have five variables: three wind components, density and pressure. 

There are five equations if we add hydrostatic balance, continuity and a thermodynamic/density equation.
(if we add temperature as a variable then it is linked to density and pressure by the equation of state). 

For an incompressible hydrostatic fluid, only the momentum and thermodynamic/density equations are 
prognostic. Continuity and hydrostatic balance are diagnostic.

balancenonlinear

The momentum equations

rotationdevelopment

hydrostatic

continuity

density (thermodynamic)



Geostrophic flow is possible with no density variations (homogeneous). But when density 

varies, things get interesting:

Geostrophic - hydrostatic flow -> Thermal Wind Balance (with the Boussinesq approximation)

So horizontal gradients of density (or temperature) are related to vertical gradients of geostrophic flow.

And now in pressure coordinates without the approximation on density:

So without approximation we can say that vertical (pressure) gradients of the geostrophic wind depend on 

horizontal gradients of density. 

This analysis also reveals that if density is a function of pressure, then the geostrophic wind must be vertically 

uniform -> “Barotropic flow”. 

Geostrophic hydrostatic flow



Density and its variations

The way in which density varies can have important consequences for the flow. Here are 

the definitions for various levels of approximation: 

Homogeneous:

Boussinesq:

Anelastic:

Barotropic:

Baroclinic:

Later we will use the shallow water model. 
This represents a Boussinesq fluid with a set of homogeneous layers. Density is piecewise constant. 

Pressure varies continuously in the vertical and in the horizontal (but horizonal gradients of pressure will be 

piecewise constant). 



Barotropic and baroclinic flow

We have seen that in some circumstances the flow is vertically coherent. Depth 

independent flow is associated with the “barotropic” component, also referred to as the 

“external” mode (more on this later). Bartotropic flow can exhibit many phenomena: 

vortices, Rossby waves, jets and instability. It is a good starting point for theories of the 

large scale ocean circulation. 

When density surfaces cross pressure surfaces the flow is “baroclinic”. The baroclinic 

component is associated with horizontal temperature gradients: fronts and developing 

cyclones; ocean eddies on the thermocline. Baroclinic processes are necessary to liberate 

potential energy and generate circulation. Baroclinic instability occurs on a preferred scale 

(the Rossby radius) and is important for generating geostrophic turbulence.



Stationary waves

This is the departure from the zonal mean. The flux produced by any flow 
structure, the time mean for example, can be decomposed into components 
effected by the zonal mean (Hadley, Ferrel cells) and by the stationary 
waves. 

Transient eddies

This is the departure from the time mean. The flux due to time variations is 
an important part of the mean flux. 

Transient eddy “forcing”

Consider the maintenance of the time mean flow:

The mean effect of transient eddies is sometimes viewed as a forcing term 
the contributes to to the maintenance of the time-mean state. 

These mechanisms depend on nonlinear terms, and may lead to nonlinear 
behaviour on longer timescales (but not necessarily). 

Nonlinearity often manifests as asymmetry

Stationary and transient flow
DJF



The importance of rotation: the Rossby number

Compare the advection term with the Coriolis force

When the Rossby number is small the flow is close to geostrophic

The importance of stratification: the Froude number

For nonrotating steady flow                                   compare vertical divergence with horizontal divergence

The Froude number is the ratio of flow 

speed to internal gravity wave speed. 

When the Froude number is small stratification is important, vertical excursions of the flow are limited. 

Rotation vs Stratification: the Burger number

When the Burger number is ~1, vorticity advection balances vortex stretching.

This occurs at a special spatial scale...

The Rossby radius:  

Some scaling parameters

Recall



Equation sets and variables

The primitive equations
essentially five variables, three prognostic equations and two diagnostic equations

The shallow water equations
three variables, three prognostic equations

The quasi-geostrophic equations
one variable, one prognostic equation, one definition

Streamfunction and velocity potential (revision)

The vector horizontal velocity can be written as two scalars

Φ is the velocity potential. Divergent flow emanates from maxima of Φ. 

ψ is the streamfunction. Nondivergent flow circulates clockwise round maxima of ψ.

If the flow is either nondivergent or irrotational we can economise one variable. 

Quasi-geostrophic flow is nondivergent so we only need ψ.

Furthermore, divergence,                                         and relative vorticity,  



Alternative vertical coordinates

We can simplify the equations if we use a conserved quantity as the vertical coordinate. In this frame of 

reference there is no “vertical velocity”, rendering the system two-dimensional. So we can reduce our 

equation set by using coordinate systems based on density in the ocean or potential temperature in the 

atmosphere. But the price we pay for this simplification is to complicate the boundary conditions: coordinate 

surfaces outcrop, they move in time, and our coordinates are no longer orthogonal. 

General coordinate transformation:

rule 1

rule 2



Let’s transform the primitive equations to density coordinates for isopycnal flow in a 
Boussinesq fluid:

Hydrostatic equation:                                                               (rule 2)

Define “Montgomery potential” as

Momentum equations:                                                                       (rule 1)

and if ρ is  conserved, no equivalent of vertical velocity so

Continuity:

apply rules 1 and 2 and after some manipulation:  

This is mass conservation expressed in terms of a flux of 
layer thickness. The final step to a layer model is to discretize:

Density coordinates



details

5) Analysis of the Montgomery potential in a layer with homogeneous 𝜌.

▪ Let’s focus on one point in space, at the position (𝑥, 𝑦), where the sea level is at the 
position 𝑧 = 𝜂, relative to an equilibrium position 𝑧 = 0. 
 At the sea level, the 𝑝 is constant and equal to  𝑝 = 𝑝𝑎,𝑥,𝑦. 

Let’s now dive at the vertical of the point.
According to the hydrostatic equilibrium, when going down the pressure continuously 
increases with depth. 
At 𝑧 = −100𝑚 below the sea level, the pressure is: 𝑝−100,𝑥,𝑦 = 𝑝𝑎,𝑥,𝑦 + 𝜌𝑔 × 100. 

And at 𝑧 = −123𝑚 below the sea level, the pressure is 𝑝−123,𝑥,𝑦 = 𝑝𝑎,𝑥,𝑦 + 𝜌𝑔 × 123. 

The layer being thicker than 123 meters (𝒉 > 𝟏𝟐𝟑𝒎).

Based on the definition of the Montgomery potential, 𝑃 = 𝑝 + 𝜌𝑔𝑧, 𝑃 remains constant 
in the vertical within this homogeneous layer, such that 𝑃−100,𝑥,𝑦 = 𝑃−123,𝑥,𝑦. This is true 

at any point in space (𝑥, 𝑦)! 
 At any point in space, the Montgomery potential 𝑃 is vertically homogenous in the 

whole layer.

▪ At another position 𝑥′, 𝑦′ , the sea level is not at the same level, and the 
Montgomery potential has a different value 𝑃’, which is also constant on the vertical.

1) We write the basic hydrostatic balance equation in 𝑧:

𝜕𝑝

𝜕𝑧
= −𝜌𝑔

2a) We use rule [2], and we get:

𝜕𝜌

𝜕𝑧

𝜕𝑝

𝜕𝜌
= −𝜌𝑔

2b) We multiply both sides by 
𝜕𝑧

𝜕𝜌
:

𝜕𝑝

𝜕𝜌
= −𝜌𝑔

𝜕𝑧

𝜕𝜌
⟺

𝜕𝑝

𝜕𝜌
+ 𝜌𝑔

𝜕𝑧

𝜕𝜌
= 0

3) We introduce a new variable 𝑃, called the Montgomery potential, defined 
as: 𝑃 = 𝑝 + 𝜌𝑔𝑧, such that:

𝜕𝑃

𝜕𝜌
=
𝜕 𝑝 + 𝜌𝑔𝑧

𝜕𝜌
=
𝜕𝑝

𝜕𝜌
+
𝜕 𝜌𝑔𝑧

𝜕𝜌
⟺

𝜕𝑃

𝜕𝜌
=
𝜕𝑝

𝜕𝜌
+ 𝜌𝑔

𝜕𝑧

𝜕𝜌
+ 𝑔𝑧

4) We simplify this equation, using the hydrostatic equilibrium equation as 
written in (2𝑏) to obtain the hydrostatic equation in density coordinate:

𝜕𝑃

𝜕𝜌
= 𝑔𝑧

HYDROSTATIC EQUATION:

▪ In the middle of point (𝑥, 𝑦) and 𝑥′, 𝑦′ , we can estimate 
𝜕𝑃

𝜕𝑥
by 

𝑃′−𝑃

∆𝑥
. The horizontal 

gradient will also be constant on the vertical of the position. It will be vertically 
homogenous in the whole layer.

 At one point in space, the Montgomery potential gradient 
𝜕𝑃

𝜕𝑥
is vertically 

homogenous in the whole layer. And as a consequence, at any point in space, the zonal 
and meridional currents (𝑢, 𝑣) are also vertically homogenous in the whole layer.

 At any point in space, 𝜌, 𝑃,
𝜕𝑃

𝜕𝑥
, 𝑢,𝑣 can be discretized in the vertical. Even if 𝜌 is 

spatially constant, as the sea level varies in function of the spatial position, 𝑃,
𝜕𝑃

𝜕𝑥
, 𝑢,𝑣 are 

not constant in space.

MOMENTUM EQUATION:

1) We write the 𝑥-momentum equation in 𝑧:
𝐷𝑢

𝐷𝑡
− 𝑓𝑣 = −

1

𝜌0
ቤ

𝜕𝑝

𝜕𝑥
𝑧

2) We use rule [1], and we get: 
𝐷𝑢

𝐷𝑡
− 𝑓𝑣 = −

1

𝜌0
ቤ

𝜕𝑝

𝜕𝑥
𝜌

−
𝜕𝑝

𝜕𝑧
ቤ

𝜕𝑧

𝜕𝑥
𝜌

3) We use the hydrostatic balance: 
𝐷𝑢

𝐷𝑡
− 𝑓𝑣 = −

1

𝜌0
ቤ

𝜕𝑝

𝜕𝑥
𝜌

+ 𝜌𝑔 ቤ
𝜕𝑧

𝜕𝑥
𝜌

= −
1

𝜌0
ቤ

𝜕 𝑝 + 𝜌𝑔𝑧

𝜕𝑥
𝜌

4) We replace with the Montgomery potential (𝑃 = 𝑝 + 𝜌𝑔𝑧): 
𝐷𝑢

𝐷𝑡
− 𝑓𝑣 = −

1

𝜌0
ቤ

𝜕𝑃

𝜕𝑥
𝜌

5) As density is conserved, there is no vertical velocity. Developing 𝐷/𝐷𝑡 yields:

likewise: 
𝜕𝑢

𝜕𝑡
+ 𝑢 ቤ

𝜕𝑢

𝜕𝑥
𝜌

+ 𝑣 ቤ
𝜕𝑢

𝜕𝑦
𝜌

− 𝑓𝑣 = −
1

𝜌0
ቤ

𝜕𝑃

𝜕𝑥
𝜌

𝜕𝑣

𝜕𝑡
+ 𝑢 ቤ

𝜕𝑣

𝜕𝑥
𝜌

+ 𝑣 ቤ
𝜕𝑣

𝜕𝑦
𝜌

+ 𝑓𝑢 = −
1

𝜌0
ቤ

𝜕𝑃

𝜕𝑦
𝜌



details

1) We write the basic continuity equation in 𝑧 without the meridional contribution:

ቤ
𝜕𝑢

𝜕𝑥
𝑧

+
𝜕𝑤

𝜕𝑧
= 0

CONTINUITY EQUATION:

2a) Use of rule [1] to replace ቚ
𝜕𝑢

𝜕𝑥 𝑧
. We get:

ቤ
𝜕𝑢

𝜕𝑥
𝜌

− ቤ
𝜕𝑢

𝜕𝑧

𝜕𝑧

𝜕𝑥
𝜌

+
𝜕𝑤

𝜕𝑧
= 0

2b) Use of rude [2], for 
𝜕𝑢

𝜕𝑧
and 

𝜕𝑤

𝜕𝑧
term:

ቤ
𝜕𝑢

𝜕𝑥
𝜌

− ቤ
𝜕𝜌

𝜕𝑧

𝜕𝑢

𝜕𝜌

𝜕𝑧

𝜕𝑥
𝜌

+
𝜕𝜌

𝜕𝑧

𝜕𝑤

𝜕𝜌
= 0

2c) Multiply this equation by 
𝜕𝑧

𝜕𝜌
:

𝜕𝑧

𝜕𝜌
ቤ

𝜕𝑢

𝜕𝑥
𝜌

− ቤ
𝜕𝜌

𝜕𝑧

𝜕𝑢

𝜕𝜌

𝜕𝑧

𝜕𝑥
𝜌

+
𝜕𝜌

𝜕𝑧

𝜕𝑤

𝜕𝜌
= 0

 This leads to equation (1):

𝜕𝑧

𝜕𝜌
ቤ

𝜕𝑢

𝜕𝑥
𝜌

− ቤ
𝜕𝑢

𝜕𝜌

𝜕𝑧

𝜕𝑥
𝜌

+
𝜕𝑤

𝜕𝜌
= 0

3a) Now we work only on the last term 
𝜕𝑤

𝜕𝜌
:

𝜕𝑤

𝜕𝜌
=

𝜕

𝜕𝜌

𝐷𝑧

𝐷𝑡

3b) We expand the variation in 𝑧, such 
there is a local time variation and some 

advection of slope ቚ
𝜕𝑧

𝜕𝑥 𝜌
:

𝜕𝑤

𝜕𝜌
=

𝜕

𝜕𝜌

𝜕𝑧

𝜕𝑡
+ ቤ𝑢

𝜕𝑧

𝜕𝑥
𝜌

3c) We develop, the last term being the 
vertical gradient of density slopes. We get 
equation (2):

𝜕𝑤

𝜕𝜌
=

𝜕2𝑧

𝜕𝜌𝜕𝑡
+ ቤ
𝜕𝑢

𝜕𝜌

𝜕𝑧

𝜕𝑥
𝜌

+ อ𝑢
𝜕2𝑧

𝜕𝜌𝜕𝑥
𝜌

4) Now we inject equation (2) into equation (1):

𝜕𝑧

𝜕𝜌
ቤ

𝜕𝑢

𝜕𝑥
𝜌

− ቤ
𝜕𝑢

𝜕𝜌

𝜕𝑧

𝜕𝑥
𝜌

+
𝜕2𝑧

𝜕𝜌𝜕𝑡
+ ቤ
𝜕𝑢

𝜕𝜌

𝜕𝑧

𝜕𝑥
𝜌

+ อ𝑢
𝜕2𝑧

𝜕𝜌𝜕𝑥
𝜌

= 0

5) We simplify the two  ቚ
𝜕𝑢

𝜕𝜌

𝜕𝑧

𝜕𝑥 𝜌
terms that cancels out:

𝜕𝑧

𝜕𝜌
ቤ

𝜕𝑢

𝜕𝑥
𝜌

+
𝜕2𝑧

𝜕𝜌𝜕𝑡
+ อ𝑢

𝜕2𝑧

𝜕𝜌𝜕𝑥
𝜌

= 0

6) All the terms have a 
𝜕𝑧

𝜕𝜌
. We rearrange the order of the derivatives in the last terms:

𝜕𝑧

𝜕𝜌
ቤ

𝜕𝑢

𝜕𝑥
𝜌

+
𝜕

𝜕𝑡

𝜕𝑧

𝜕𝜌
+ 𝑢

𝜕

𝜕𝑥

𝜕𝑧

𝜕𝜌
= 0

7) We put the time derivative first, and then we factorize the last terms:

𝜕

𝜕𝑡

𝜕𝑧

𝜕𝜌
+

𝜕

𝜕𝑥
𝑢
𝜕𝑧

𝜕𝜌
= 0

8) Considering a discreet representation with layers of constant density 0, 
𝜕𝑧

𝜕𝜌
becomes 

ℎ

∆𝜌
, with ℎ the thickness of a layer, and ∆𝜌 a standard density difference 

between two adjacent layers. The continuity equation (without meridional term) writes:

𝜕ℎ

𝜕𝑡
+

𝜕

𝜕𝑥
𝑢ℎ = 0

THERMODYNAMIC EQUATION (density equation):

1) We write the basic continuity equation. 

▪ In any coordinate system (Boussinesq fluid – incompressible):

𝐷𝜌

𝐷𝑧
= 0

▪ In 𝑧 coordinate system:

𝜕𝜌

𝜕𝑡
+ 𝑢 ቤ

𝜕𝜌

𝜕𝑥
𝑧

+ 𝑣 ቤ
𝜕𝜌

𝜕𝑦
𝑧

+𝑤
𝜕𝜌

𝜕𝑧
= 0

i.e.: 
𝜕𝜌

𝜕𝑡
+ 𝑢 ቤ

𝜕𝜌

𝜕𝑥
𝑧

+ 𝑣 ቤ
𝜕𝜌

𝜕𝑦
𝑧

+
𝑑𝑧

𝑑𝑡

𝜕𝜌

𝜕𝑧
= 0

2) On a surface of constant 𝜌, 𝑧 varies. To make 𝑧 the variable and 𝜌 the coordinate, 
we rewrite this equation swapping the variables:

𝑑𝑧

𝑑𝑡
=
𝜕𝑧

𝜕𝑡
+ 𝑢

𝜕𝑧

𝜕𝑥
+ 𝑣

𝜕𝑧

𝜕𝑦
+
𝑑𝜌

𝑑𝑡

𝜕𝑧

𝜕𝜌
= 𝑤

 The last term is zero, because 𝜌 is conserved. This gives us an equation for 𝑤

𝑤 =
𝜕𝑧

𝜕𝑡
+ 𝑢

𝜕𝑧

𝜕𝑥
+ 𝑣

𝜕𝑧

𝜕𝑦



Apply the hydrostatic equation across
the layer interface zi (ignoring atmospheric 
pressure gradients)

Horizontal gradients of P take the following forms (where D = h1 + h2)

and in general, for N layers

The first term on the right is the “external mode”, associated with fast 
surface waves. The terms involving the matrix C are the “internal 
modes” associated with slow waves on the layer interfaces. We have 
a set of linear expressions for the horizontal pressure gradient that 
we can decouple by finding the eigenvectors of C.

Shallow water layers

H

For two layers

For the general N-layer case



The shallow water equations

Now we have expressions for the Montgomery potential we can eliminate it, discretize the 

stratification and write the equation set in terms of u,v and h: first for two layers, i=1,2

And for N layers the momentum equations are

where h is the column vector (h1, h2, ....)

this term

just for

i=2



The thermocline and the abyss

Instead of having a free surface and a flat bottom, we can reconfigure to have a rigid lid 
and a motionless abyss. This is sometimes called a 11/2 layer model. 

The equations are the same except we replace g with g’

With a rigid lid we lose the external mode. In the general case (N layers) the x-momentum 
equation becomes 

Note that C has been flipped, and stripped of its zeros. One extra internal mode replaces the external mode 
associated with the free surface in the previous system. All the gravity waves are slow. 

g

g’

𝐷𝑢

𝐷𝑡
− 𝑓𝑣 = −𝑔(′)

𝜕ℎ

𝜕𝑥

𝐷𝑣

𝐷𝑡
+ 𝑓𝑢 = −𝑔(′)

𝜕ℎ

𝜕𝑥

𝜕ℎ

𝜕𝑡
+

𝜕

𝜕𝑥
𝑢ℎ +

𝜕

𝜕𝑦
𝑣ℎ = 0



Geostrophic hydrostatic balance is quite elegant in density coordinates

Application: fronts in the atmosphere

“Margules relation”, southerlies increase with height

Application: currents in the ocean

When you’re floating on a free surface it’s impossible to measure pressure independently of depth. 

Since the density of water is 1000x the density of air, pressure surfaces are almost flat, making it 

very difficult to measure horizontal gradients. You have to make do with temperature and salinity 

(and thence density).  

Measure vertical profiles at two points to see how the position of the thermocline varies 

horizontally. 

The slope of the thermocline gives you the difference in current across it. 

Sometimes oceanographers call this the “geostrophic current”. 

This assumes that the abyssal flow is weak, or that there is a “level of no motion”. 

Final note: Thermal wind balance is nothing more than the horizontal component of the vorticity 

equation...

Thermal wind revisited



Circulation and vorticity

Circulation is the fluid equivalent of angular momentum. It is defined over a region as

Taking the time derivative gives

and if                                 then  

So over a fixed region, circulation can only be generated by baroclinic processes 

Vorticity is the point quantity of which circulation is the integral

Positive vorticity is anticlockwise

For solid body rotation  

curvature                 shear



d/dx(2) - d/dy(1) =>

or to put it another way

This is the barotropic vorticity equation.

Vorticity can be generated by divergence, and divergence is associated with vertical displacement of layer 

boundaries - otherwise known as “vortex stretching” - which leads to coupling between the layers. 

If the flow is nondivergent it works in individual layers, and absolute vorticity is conserved. 

Vorticity can be generated and dissipated by mechanical stress at the boundaries (this is the basis of ocean 

circulation theory). 

Sverdrup balance

The vorticity equation

and      are sources 

and sinks of momentum

Vorticity can also be generated by “solenoidal” processes, 

which we have neglected in our Boussinesq fluid 

(cf circulation theorem)



details



Let’s transform continuity equation from flux form to material tendency form

So                                 looks remarkably similar to

Clearly the layer thickness tendency, through mass conservation, is generated by the divergent flow. 

Similarly, the tendency of absolute vorticity is generated by the divergent flow. If we eliminate the divergence:

we get a new conservation law 

This is the “potential vorticity”

In this form, potential vorticity is conserved on density layers. 

More generally, PV is the ratio of the absolute vorticity to the stratification,                     and it is conserved on 

isentropic surfaces (constant potential temperature). 

It’s also a very compact convenient way to express the dynamics

Generation of vorticity by divergence



Potential vorticity conservation

To conserve PV, changes in h are are compensated by changes in either f or ξ. This is another way to 

understand the link between divergent flow, mass conservation, vortex stretching and the generation of 

rotational flow. 

Example: Cold air mass

Example: Mountains, Taylor columns and Rossby waves

convergence

stretching

divergence constant => flow does not cross h contours

=> Rossby waves



Conservation laws and potential quantities

The name “potential” vorticity gives a clue as to why it is conserved. 

This is the relative vorticity the fluid parcel would have if stretched to 

the mean layer thickness and brought to the equator. 

As such, it is like an address label that we attach to a parcel of fluid. 

The label refers to the state a parcel would have in reference conditions. 

The vorticity of the fluid might change as it shifts latitude or stratification, 

but this label is a constant reference. 

The same principle applies to potential temperature: it’s the temperature 

a parcel would have if brought adiabatically to 1000mb.



Chapter 2: Quasi-geostrophic theory

 Steady departures from geostrophy: nonlinearity and drag.

Ageostrophy, divergence and potential vorticity.

 f-plane quasi-geostrophy in shallow water.

Quasi-geostrophy on a curved planet. 

 Continuous stratification

Development and vertical motion. 

“Richardson’s dream”



Recall x-momentum equation (for a single layer)

Now assume time independent uniform flow in a circle. The nonlinear (advection) terms express centrifugal 

force - this is gradient wind balance (without the Coriolis force it is “cyclostrophic” balance). 

so

or

(“anomalous” cases have v and vg opposite sign,                      ) 

solution for v                                                           so flow around a high limited by

(no such limitation for flow round a low)

Gradient wind balance

v

P

Co

Ce

Ce

Co

Pv

Low: v positive

High: v negative



Boundary friction

Adding surface stress can alter the balance in a linear framework, leading to convergence or divergence. 

This is the reason air ascends in lows (cloudy weather) 

and descends in highs (clear sky). 

It is also the basis of the way the ocean driven the wind 

through Ekman pumping and Ekman suction. 

But now we need to move away from these

anecdotal cases, and put together a system

with advection and time dependence that is

almost, but not quite, geostrophic. 

We do this essentially by separating the flow into a geostrophically balanced, nondivergent part, and the 

ageostrophic plus the divergent parts as a small perturbation. This small perturbation allows prognostic 

equations that lead to the evolution of the flow. 

v

P

Co

D

v

Co

D

Sub-geostrophic

ascent

Ekman pumping



Ageostrophic perturbation

Start with the shallow water momentum equations in a single layer

What happens if we substitute in geostrophic velocity ?

Redefine the material tendency to advect with the geostrophic wind

What if we use the geostrophic value in the Coriolis term as well ?
Obviously this can’t work because it leads to zero tendency !

Instead we make sure the equation is linear in the ageostrophic part

So the full flow is used in the linear Coriolis terms and we advect with the geostrophic flow. 
This is consistent with the idea that the ageostrophic part of the flow is small. 

𝑢𝑔 = −
𝑔

𝑓

𝜕ℎ

𝜕𝑦
, 𝑣𝑔 =

𝑔

𝑓

𝜕ℎ

𝜕𝑥



Quasi-geostrophic f-plane vorticity equation

-> vorticity equation

If we are on an f-plane the last term disappears and the geostrophic flow is nondivergent 

so we can write this as



Continuity equation

What happens when we try this with the continuity equation ?

Replace this D/Dt with the geostrophic operator Dg/Dt

But v depends on h. Terms involving vag were linear in the momentum equations so they must be linear here 

too. For consistency we must therefore write:

(this is equivalent to the approximation                     )

The ageostrophic term is now linear.

or   

In order to keep the ageostrophic 

term linear we had to make a 

strong assumption about the 

stratification. 



Quasi-geostrophic potential vorticity

We can rewrite the continuity equation as 

which as before has the same right hand side as the vorticity equation so we get

This is the conservation law for quasi-geostrophic potential vorticity:  

q is the linearised form of the full “Ertel” potential vorticity (but note that the units are different)

Geostrophic scaling

This linearisation of layer thickness variations is a surprising consequence of our insistence that the flow be 

close to geostrophic. 

In a vertically continuous framework it means that the stratification is uniform in the horizontal



Adding curvature to the earth

That was all pretty straightforward because we assumed that f was constant. 

But for many important dynamical phenomena the variation of f is important (Rossby 

waves, for example). 

On an f-plane the geostrophic flow is strictly nondivergent. 

If f varies then we have to deal with the divergent part of the geostrophic flow as well as the 

ageostrophic flow. 

We will assume that both these components are small compared to the nondivergent part 

of the geotrophic flow. 

To proceed, we must derive the quasi-geostrophic set as an expansion of this perturbation 

in a small parameter. 

We naturally choose the Rossby number for this small parameter.



Derivation of the quasi-geostrophic set for a shallow water layer

Recall full momentum and continuity equations:

Introduce scaling for non-dimensionalisation:

So the full equations become

If the basic scalings conform to geostrophic balance (f0 is the value of f at a reference latitude)

Define the Rossby number and temporal Rossby number as                                and

Dropping primes, (1) / f0U, (3), (4) and (5) ->



Quasi-geostrophic continuity equation

Again dropping primes, L/UH x (2) ->

The non-dimensional constant that appears in brackets in this equation is Bu
-1, or  L2/LR

2. Call it F. 

Remember, when F~1, Coriolis and gravity / buoyancy effects are comparable. 

So the non-dimensional continuity equation is 

So far we haven’t made any approximations. 

But we can already see from these two equations that to zero order in our Rossby number parameters, the 

flow is geostrophic and nondivergent. 

First order terms concern advection, divergence and time development.

Before doing a formal expansion in the Rossby number, we will set out our assumptions in detail. 



The assumptions of quasi-geostrophic theory 

1) small Rossby number, i.e. close to geostrophy 

2) small temporal Rossby number, i.e. timescales slow compared to local rotation rate. 

- no fast moving linear waves

- nonlinear (advection terms important for time development) 

In fact we assume that 

3) buoyancy/gravity - stratification effects as important as Coriolis effects

A consequence of (3) and (1) is that δh << H 

- linearisation of continuity equation and q.g.p.v. as we saw before. 
In a continuously stratified case this is equivalent to saying that N2 is a function of z but not of x and y. 

4) scales of motion small compared to the radius of the earth 

In fact we assume that 

Assumptions (3) and (4) have nothing to do with geostrophy !

They are necessary for our expansion to be self-consistent. 



Is a consequence of assumption (4), that the scale of motion is small compared to the radius of the earth.

Taylor expansion about reference latitude Φ0 (where y’ = y/re)

set                                                       then provided 

we can write, to first order                                 

Henceforth drop primes on nondimensional y’ and β’

This is often referred to as the “beta-plane” approximation, because the function f describes a 

plane in x-y space. 

Not to be confused with the actual shape of the surface of the earth ! 

When we add the beta term, the surface of the earth ceases to be a plane and becomes a curve. 

If we approximate the surface of the earth as a plane, then f is constant: the f-plane. 

The beta effect

(as long as we stay away from the 

equator where                            )



The expansion

Our equations are now 

non-dimensional.

u, v, η, β, F ~ 1; ε << 1

Expand variables in increasing 

powers of ε.

Substitute this into the equations and compare coefficients of ε0 (zero 

order) and ε1 (first order). 

Zero order

Note that the curl of (1) gives (2). The two equations are equivalent. No development. Degenerate dynamics. 

Geostrophic nondivergent flow can only change in time with the help of the first order (divergent) flow. 

We can say η0 acts as a streamfunction for v0, i.e. 

Note that since v0 is nondivergent, it is not the total geostrophic flow, just its nondivergent part. 

It represents the geostrophic flow on the f-plane at f= f0. 



First order in ε

The second term in (2) is zero because v0 is 

perpendicular to ▽η0, and v0 is nondivergent. 

The local tendency of zero order height comes from the divergence of the first order flow. Note that this 

divergence comes from the ageostrophic flow and the divergent part of the geostrophic flow. 

Take the curl of (1) to eliminate η1 and form the first order vorticity equation: 

The second and fifth terms are zero (nondivergent v0). Combining this with (2) gives:

then using                                                                                              we can write

or



Quasi-geostrophic potential vorticity again

Now, using

and we can write our prognostic equation as

or

q is now the non-dimensional q.g.p.v.
One equation, one variable. 

Re-dimonsionalise q:

Using previously defined scalings, working back to dimensional equations leads to

and if we define the quasi-geostrophic streamfunction

we get                                                              or 

and     



Continuously stratified fluid

Up until now we have worked with discrete layers, each of which is homogeneous (constant density). 

The extension to continuous stratification requires that we abandon this formulation and reintroduce a vertical 

coordinate. The expansion around small Rossby number is very similar so it is shown in appendix slides. The 

result is once again a conservation law for potential vorticity, which is defined entirely in terms of a 

streamfunction, so one equation, one variable. 

where now, ψ is defined as

This is an anelastic fluid, which allows large variations of density with height, accounting for the static 

compressibility of the atmosphere. In this case the q.g.p.v. is

Only the vortex stretching component has changed.

In a Boussinesq fluid, where ρs is a constant (independent of z), this simplifies to



details



details



details



details



details



One variable to rule them all

Since ψ is the only variable in the system, it must be possible to express anything in term of ψ, and is !

Knowledge of q plus boundary conditions leads to knowledge of ψ, and hence the advecting flow. 

Prediction becomes a sequence of operations:

1) diagnose q

2) integrate the prognostic equation forward in time to find the next values of q

3) apply boundary conditions and invert the elliptic operator to find ψ

4) rinse and repeat



Development

We approximate the quasi-geostrophic potential vorticity equation as 

rearrange the derivatives on the variable ψ: 

Now assume ψ is a wavelike disturbance with a sign 

change in the vertical (first baroclinic mode)

so

The terms on the right hand side generate the tendency in ψ. So a local rate of change of ψ, or equivalently a 

change of pressure or geopotential, is proportional to... 



Advection of absolute vorticity 

We see from the picture that zonal advection of relative 

vorticity sends troughs and ridges east. Meridional 

advection of planetary vorticity sends troughs and ridges 

west. Which process wins ?

Long waves go west, f dominates (Rossby waves).

Short waves go east, ξ dominates 

For short waves 

so a ridge in region I propagates east. But the tendency is 

zero at the axes of the ridges and troughs, so no 

amplification. 

𝛁𝝃 > 𝟎 𝛁𝝃 < 𝟎

𝐯. 𝛁𝝃 > 𝟎 𝐯. 𝛁𝝃 < 𝟎

ridge

trough

𝑣.
𝒅𝒇

𝒅𝒚
< 𝟎 𝑣.

𝒅𝒇

𝒅𝒚
> 𝟎

f



This is sometimes called the “differential thickness advection” 

(ever noticed how synopticians love talking in multiple 

derivatives ?) 

If we have warm advection at low levels then this term is 

positive and a ridge is created.

If we have cold advection at low levels this term is negative 

and a trough is created. 

Vertical gradient of temperature advection 

Eastward flow v



The quasi-geostrophic system allows us to do a more accurate diagnosis 

than we can do with 3-d nondivergence which suffers from large cancellation.

The first order Boussinesq thermodynamic equation yields

Compare the Laplacian of this equation with the vertical derivative of the vorticity equation

equate right hand sides

Note that this time we have eliminated the tendency term (rather than the vertical velocity term) between the 

vorticity and thermodynamic equations and obtained a diagnostic equation for w (rather than a prognostic 

equation for ψ). It’s an elliptic equation for vertical velocity in terms of the geostrophic streamfunction. It’s 

often called the Omega Equation (usually derived in pressure coordinates). 

Vertical velocity

(using                     )



Recap

Tendency equation:

Geopotential (fall/rise) proportional to: 

A) (+/-) vorticity advection

B) rate of decrease with height of (cold/warm) advection. 

Omega equation:

(rising/sinking) motion proportional to: 

A) rate of increase with height of (+/-) vorticity advection 

B) (warm/cold) advection 



Chapter 3: Rossby waves and instability

 Parcel displacements and the conservation of potential vorticity

 The Rossby wave dispersion relation

 Topographic RW, baroclinic RW and vertical modes

 Parcel displacements in shear flow

 Barotropic instability and the necessary conditions for growth

 Scales and structures for baroclinic growth and the Eady problem

𝒆𝒊(𝒍𝒙+𝒎𝒚−𝝎𝒕)



Some Recap

𝒆𝒊(𝒌𝒙−𝝎𝒕)



 Consider a parcel of fluid that conserves its absolute vorticity in a westerly current

Parcel displacements in a vorticity gradient

Constant background flow 𝑈

Rossby

wave



The conservation of vorticity

 Let’s look at various forms of the vorticity equation in a westerly flow

where D/Dt is given by                                                                    (prime denotes small perturbation)

... and q can take various forms :

1) Nondivergent barotropic

2) Single layer of variable thickness

3) Two active quasi-geostrophic layers 

with a flat bottom and a rigid lid



In the first case we write down the vorticity equation as:

The linear equation in perturbations ψ is

Look for zonal wave solutions of the form 

Substitution into the derivatives gives algebraic expressions

 Leads to the dispersion relation:

1) Nondivergent barotropic case

u=U+u’ v=v’

- l is the zonal wave number (2 divided by the x-wavelength)
- m is the meridional wave number (2 divided by the y-wavelength)
-  is the angular frequency (2 divided by the period)



details



Rossby wave dispersion

Dispersion relation

The phase speed and group speed in the x direction are given by

The phase speed is westwards relative to the mean flow. 

The group speed depends on the zonal and meridional scale of the wave. 

Longer waves (smaller k2) travel faster. 

Waves closer to the equator (bigger β) travel faster. 



Rossby wave propagation mechanism

Can be understood in terms of the conservation of potential vorticity. When a parcel of fluid 

changes latitude, to compensate for its changing planetary vorticity, it must acquire either 

positive or negative relative vorticity. This induces a circulation that leads to the westward 

propagation of the disturbance. 



2) Divergent case (variable layer thickness)

If we allow some vortex stretching in the conservation law, there is some modification 

of the Rossby wave characteristics. We linearize

so

 The dispersion relation is now

The current no longer just provides a simple doppler shift, but actively changes the basic state PV gradient, 

altering the propagation speed of the waves. 

Note also that the denominator does not go to zero, so the phase speed is bounded and long waves are 

much less dispersive, with group speed to the west, even when m=0. 

material tendency of  

perturbation relative vorticity 

and vortex stretching term

perturbation advection of 

planetary vorticity and basic 

state stretching term

 In the PV conservation equation, the stream function is the summed-up contribution of:
the stream function associated with the perturbation ψ
the background flow stream function ψB=-Uy



Topographic Rossby waves

Vortex stretching can be important for Rossby waves in situations 

where there is a sloping bottom (ℎ𝑂𝐶 = 𝛼𝑦). It is analogous to the 

effect of changing the Coriolis parameter with latitude. 

Both are geometric effects giving rise to a “restoring force”, owing 

to the generation of relative vorticity. 

In the northern hemisphere, 

an ocean floor that is 

shallowing to the north will 

have the same effect as beta. 

In the southern hemisphere 

the ocean floor must shallow 

to the south.



Two active quasi-geostrophic layers with a flat bottom and a rigid lid. Ignore advecting current for simplicity.

3) Two active layers

𝛿ℎ



Two active quasi-geostrophic layers with a flat bottom and a rigid lid. Ignore advecting current for simplicity.

We can uncouple these equations by subtraction and addition to find the 

“normal modes”. We can then find independent solutions for the two modes.

The equations become

3) Two active layers

Barotropic Mode Baroclinic Mode



Extension to the vertical continuum

Consider quasi-geostrophic fluid bounded at top and bottom by rigid flat surfaces (w = 0).

For simplicity we assume constant basic state stratification.

with boundary condition   

seek wave solutions

with separable vertical dependence

In general, leads to dispersion relation

In this simple case the eigensolutions are cosines

n=0

n=1

n=2

n=3

z=0

z=-H

0                        1



Vertically propagating Rossby waves

Consider the vertical wavenumber for each mode

Dispersion relation for long Rossby waves

We can trace the signal path associated with vertical 

propagation in the x-z plane by calculating the ratio of 

components of the group velocity

So

Remember cn is the gravity wave 

speed associated with the vertical 

mode, not the phase speed of the 

Rossby wave !

Propagation 

pathway for 

isotherm depth 

variability from 

ARGO data

(Vergara 2017)



Observations

Evidence of Rossby wave propagation in satellite altimetry of the sea surface ?



Let’s revisit the mechanism for Rossby waves, but this time with horizontal shear

Growing Rossby waves ?

No curvature

induced

STABLE (imaginary exponential)

UNSTABLE (real exponential)

Constant
background 

flow 𝑈

Shear background flow 𝑈

B



Perturbations on a shear flow

 Barotropic nondivergent flow: uniform in the vertical

choose a background flow that is a solution of the equations: 

add perturbations:

 Leads to the perturbation barotropic vorticity equation:

advection of perturbation 

vorticity by basic state winds

advection of basic state absolute 

vorticity by perturbation winds

ഥ𝒖

𝑧 = 0

Z=−𝐻



details



Stationary Rossby waves

As before, we can derive a dispersion relation for Barotropic 

Rossby waves, this time on a shear flow, by introducing 

solutions of the form

Consider stationary waves: 

And the stationary wavenumber 

For stationary Rossby waves to exist,                     must 

have the same sign as     (which usually means both must 

be positive). 

Ray paths can be calculated as before from the ratio of 

components of the group velocity

(Coelho et al 2016)



Growing solutions

Now let’s seek solutions in form of zonal wave with coefficients that depend on y

Substitute in, get

the “Rayleigh equation” (where c = ω / l). If we add channel boundary conditions

Φ = 0 at y = 0, L, in general we get a set of solutions for Φ associated with complex conjugate pairs of values 

for c (or ω). The imaginary part of the solution is associated with growth or decay. The growth rate is the 

imaginary part of ω.

(note that the wavenumber l is real)



details



Conditions for growth: the Rayleigh criterion 

Multiply the Rayleigh equation by Φ* and integrate across the domain: 

The term on the left is real. If c is complex, and we multiply top and bottom by 

we can isolate the imaginary part:

If ci ≠ 0 then we have growth. So a necessary condition for growth is that the integral is zero. 

This means that must change sign between y = 0 and y = L. 

To put it another way, the gradient of absolute vorticity of the background flow:

must change sign in the domain. 

So we require an extremum in absolute vorticity.

(integrate by parts and apply boundary 

conditions)



derivation: integrating by parts

⟹



More conditions for growth: the Fjørtoft criterion

The real part of the integral must also be zero. By the same manipulation as before this gives

thus

as we already know

we can deduce that                                         must be positive somewhere in the domain
for any u0 including the value for the background flow at the extremum. 

The expression is obviously zero at the extremum but must be positive 
somewhere in the domain. The choice of the value of u0 at the latitude 
of the vorticity extremum makes this criterion as stringent as possible.

Note: a the non-satisfaction of a necessary condition for instability 
can also be seen as a sufficient condition for stability

Fjørtoft Logic

constant



Conditions for growth

 Both Rayleigh and Fjørtoft criteria are just necessary conditions. They are not sufficient 
conditions. This means that, when analyzing a potential vorticity map, if one of these conditions is 
satisfied, it does not mean that the flow is unstable, it means that it is possible for the flow to be 
unstable.

On the other hand, the non-satisfaction of a necessary condition is a sufficient condition, 
which means that if the Rayleigh or the Fjørtoft condition is not satisfied then the flow is stable.



Stable and unstable profiles

Poiseuille Flow

(u = 1 - y2)

Gaussian jet

sinusoidal

polynomial 

(boundary 

extrema)

stable (Rayleigh) -

no change of sign

possibly unstable –

change of sign

possibly unstable –

change of sign

stable (Fjørtoft) –

vorticity extrema at the 

boundaries

boundary extrema but u always has opposite sign to 

vorticity gradient (f plane example, beta might change 

this) so product always negative. 

- Remember: Fjortoft criterion must work for any u0

-

-



Physical mechanism

Take the example of an isolated shear layer. It has negative (clockwise) vorticity and is embedded 

in a flow that has no vorticity. So it represents an extremum. 

The perturbation meridional flow 

can export this vorticity into a 

region where there is none. At the 

same time, on the other side of 

the vorticity strip, but just out of 

phase, the same thing happens. 

The induced flow deforms the 

vorticity strip so that the situation 

amplifies and the deformation 

continues.



Baroclinic instability

Now we turn to a mechanism that 

can liberate stored potential 

energy in a system that may be 

barotropically (and statically) 

stable. Ultimately, work is done by 

gravity to provide growing kinetic 

energy. The perturbation must 

have the right structure to make 

the necessary rearrangements to 

tap this source of energy. 
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Sloping convection

In a rotating system we can imagine a steady basic state with inclined 

density contours (we need rotation to balance the pressure gradient 

forces). It can be statically stable. But a sloping parcel displacement can 

still leave a parcel in a situation where it is more buoyant. The 

displacement A-C is stable. But the exchange of the two parcels A and B 

will release energy stored in the density structure. 



Optimal scales for growth

The mechanism relies on horizontal variations of density, and on a perturbation that has the right phase 

arrangement to amplify by vortex stretching. Consider the following scaling for the quasigeostrophic potential 

vorticity (on an f plane):

If distance scales as L, then

and if height scales as H then the vortex stretching term scales as 

If L >> LR then the relative vorticity is unable to balance stetching, so stretching is inhibited and we have 

vertically uniform disturbances - this is the barotropic limit. 

If L<< LR then relative vorticity dominates, and the layers become uncoupled, and thus unable to cooperate to 

produce the necessary structures to liberate the potential energy stored in the horizontal variations of 

stratification, or the vertical shear of the wind.

The optimal scale is thus the Rossby (internal) radius of deformation LR = NH/f

Growing disturbances of this scale will be selected



–

+

Physical mechanism

Consider a two-layered shear flow in thermal wind 

balance. 

Introduce a positive PV anomaly in the upper layer, 

with associated cyclonic flow. 

Positive relative vorticity is associated with positive 

layer thickness, squeezing the layer below.

Induced advection in the lower layer

creates a dipole of PV anomalies with 

associated circulation patterns 

This induces southward advection of 

more positive PV in the layer above, 

amplifying the original perturbation. 

Note the westward tilt with height of the 

PV perturbations. 

At the same time, due to the upper level 

PV gradient and the gradient of f, the 

entire structure propagates westwards

as a Rossby wave. 

+

+

––

+



Modal solutions

The linear perturbation potential vorticity equation is

and as usual we seek wavelike solutions in x

substitution leads to the equation

with boundary conditions at the top and bottom (z = 0, H)

These are analogous to the Rayleigh equation for barotropic (shear) instability.



Conditions for growth

We go through the same procedure as before with these equations: multiply by the complex conjugate and 
integrate over the domain. The “domain” is now in y and z. 

This eventually leads to

the imaginary part of which is

If ci ≠ 0 then the integral must be zero. This means that at least one of the following conditions must be met 
(the “Charney - Stern - Pedlosky criteria”)

- Qy changes sign in the domain (there is a PV extremum)
- Qy has the opposite sign to Uz at z = H
- Qy has the same sign as Uz at z = 0
- if Qy = 0, Uz has the same sign at z =0 and z = H

Note these are just necessary conditions for the integral to vanish. 
Note that Uz is directly related to the basic state meridional temperature or density gradient.

- Waves can grow in the interior of the fluid (on PV extrema) or as boundary phenomena (on boundary 
temperature gradients).



The Eady problem

Simplest archetype of baroclinic instability

- f plane

- N2 constant

- constant vertical shear U(z) = U z/H

- motion is between two rigid flat surfaces 

at z = 0, H

- Uniform vertical shear means the basic state PV = 0. 

- The procedure for solving the problem is the same 

as before - substitute wave functions into the PV 

equation to produce a Rayleigh-type equation, and 

apply the boundary conditions w = 0 at z = 0, H.

- Instability arises from boundary temperature 

gradients. 

streamfunction

temperature

meridional velocity

𝑘𝑚 =
1.61

𝐿𝑅
𝜆𝑚 =

2𝜋

𝑘𝑚
=
2𝜋

1.6
𝐿𝑅

Wavenumber and 
wavelength at which the 

instability is the greatest are: 

Max. growth rate

~0.31
𝑈

𝐿𝑅

Non-dimesionalized growth rate



What we learn from the Eady problem

- length scale of maximum instability characterised by the deformation scale (factor of about four times)

- the most unstable growth rate is 0.3 U/LR = 0.3 f0/N du/dz

- there is a short wave cutoff - short waves are not unstable

- the circulation (meridional current, streamfunction) must slope westwards with height in westerly shear to 

extract energy from the basic state.

Some results of the Eady calculation applied in an oceanic context:

H ~ 1 km, U ~ 0.1 m/s, N ~ 10-2 s-1 leads to

deformation radius LR = NH/f = 10-2 x 1000 / 10-4 = 100 km

scale of maximum instability = 3.9 LR ~ 400 km

growth rate = 0.3 U/LR ~ 0.3 x 0.1 / 105 ~ 0.026 days-1 (period ~ 40 days)

Compare with the atmosphere

H ~ 10 km, U ~ 10 m/s, N ~ 10-2 s-1 leads to   

LR ~ 1000 km, instability scale ~ 4000 km, growth rate ~ 0.26 days-1 (period 4 days)

In the Eady problem is theoretical, the instability relies on an interaction between waves at 

the upper and lower boundaries. If either boundary is removed, the instability dies.



Heat transport in a baroclinic system

Growing structures tilt westwards with height. 

Consistent with thermal wind balance this structure also transports heat polewards.

Low

Low
High

W E



Baroclinic instability: summary

- There is clear evidence of a preferred scale for turbulent motions in the ocean

- Simple scaling arguments and more sophisticated stability analyses show that there is a 

preferred scale on which growth can occur. 

- If this growth depends on extracting energy from sloping density surfaces (or equivalently, 

vertical wind shear, or horizontal temperature gradients), then there must be an interplay 

between vortex stretching and relative vorticity terms in the conservation of PV. 

- This naturally selects structures around the Rossby deformation scale. 

- These structures can grow exponentially provided certain criteria are met: notably if 

extrema exist in the potential vorticity of the basic state.



Chapter 4: Gravity waves and tropical dynamics

 Gravity waves and rotation

 Coastal Kelvin waves

 Scales and approximations near the equator

 Equatorial Kelvin waves

 Equatorial wave solutions: dispersion and structure



Let’s start with something simple: a one-dimensional non-rotating linear system.

Which terms shall we cross out ?

x-momentum

y-momentum

continuity

Gravity waves in shallow water

This leaves us with

and the solution of this equation is                                         

a gravity wave with a simple dispersion relation



Adding rotation

Put the rotation back into the linear system, we need two dimensions and three equations again:

substitute solution

remember

Differential equations become linear algebraic equations

The unknowns are the wave amplitudes 

The parameters are the wave properties                and the geophysical constants 



Inertia-gravity (Poincaré) waves

We need to solve the algebraic system  Trivial solution                              (no flow)

 The condition for having non-trivial solutions is that the  

determinant of the matrix is zero. 

 For short waves (large l) these waves behave like 

ordinary, non-dispersive gravity waves. 

 For long waves (small l) the frequency has a lower 

limit of 𝑓, and the waves become very dispersive, 

to the point where they break down into coherent but 

unconnected free motion in inertial circles. 

Is there any way to have a large-scale gravity wave that 

propagates normally on a rotating planet ? Yes !

This leads to:

So the solutions are either   (steady geostrophic flow) 

Or “Inertia-gravity” waves or Poincaré waves:

𝜔 = ± 𝑓2 + 𝑔𝐻𝑘2



Boundary Kelvin waves

Add a lateral boundary to the problem, cross out terms involving flow perpendicular to the boundary

In the x direction we have geostrophic balance, with 

pressure and Coriolis forces alternating in direction as 

crests and troughs propagate meridionally. 

In the y direction we have non-dispersive gravity waves 

with a fixed phase speed independent of horizontal scale

Geostrophic

balance

non-dispersive

waves

Fp
Fc

Fp Fc



Boundary Kelvin waves

 Since the wave is non-dispersive, all signals must travel at 
speed c. The solution for v at y=0 and time t consists of two 
waves traveling in opposite directions:

 The corresponding solution for η is

(check this by substitution: 

)

 Substituting this solution into the geostrophic balance 
equation we can derive the x-dependence

 These relations have exponential solutions in x with a scale 
distance of the Rossby radius of deformation LR = c/f. 

V2 is a growing solution so we reject it as unphysical (𝑥 > 0). 
V1 decays away from the coast with boundary layer width LR

V1

V2

𝑉1 𝑥, 𝑐𝑡 𝑒
−

𝑥

𝐿𝑅 𝑉2 𝑥, 𝑐𝑡 𝑒
𝑥

𝐿𝑅

𝑥

𝑥 ≥ 0
f> 0



Since the only admissible solution is V1, we conclude that for a system bounded on the west (x positive) the 
wave propagates in the negative y direction, i.e. to the south. If x is negative this reverses so on the eastern 
side of the basin the Kelvin wave goes northwards. So in the northern hemisphere a Kelvin wave will keep 
the coast to its right as it is pushed against it by the Coriolis force.

In the southern hemisphere f changes sign so all these considerations are reversed, and Kelvin waves 
propagate with the coast to the left. 

What happens at the Equator ? 
Can northern and southern Kelvin waves get pushed against each other for mutual support ?

Properties of Kelvin waves

Tides are higher on the French side because 

the signal propagates in from the west

NORTH

SOUTH

Equator



Scales of motion near the Equator

At the equator 

β approximation:

 Consider a single layer overlying the abyss. 
The internal Rossby radius is

 How does this work at the equator where f=0 ?

 Define equatorial radius of deformation

 The time Teq for a wave to travel distance Req

Δρ/ρ = 0.002 (g’ = g Δρ/ρ),  H = 100m

Gives gravity wave speed c = 1.4 m/s

Pacific Equatorial Temperature



Linear Equatorial shallow water model

 Consider linear perturbations on a resting basic state

 First we’ll look for a special case - with v = 0



The equatorial Kelvin wave solution

Assume no meridional flow

As before, this is a wave equation that has non-dispersive solutions with wave speed c for all wavenumbers. 

So any function of x will translate at speed c. The solution at x can be any function of (x ± ct). 

non-dispersive

Waves

𝑐 = 𝑔′𝐻

𝑣 = 0

Cross-equatorial geostrophic

balance

U2 U1

𝑥



The Kelvin wave solution

Assume no meridional flow

As before, this is a wave equation that has non-dispersive solutions with wave speed c for all wavenumbers. 

So any function of x will translate at speed c. The solution at x can be any function of (x ± ct). 

As for coastal Kelvin waves, we can postulate solutions of the form the superposition of 2 independant waves

where U1 propagates westwards and 

U2 propagates eastwards

As before, the solution for η can be written in terms of U1 and U2

(which can be verified by substitution, to give

)

non-dispersive

Waves

𝑐 = 𝑔′𝐻

U2 U1

𝑥

𝑣 = 0

Cross-equatorial geostrophic

balance



The EKW wave properties

 The meridional structure is given by the remaining equation 

which expresses cross-equatorial geostrophic balance !

 Substituting our solutions gives:

Meridional structures are:

 Only the eastward propagating solution U2 is exponentially decaying in y2. Note the difference with 

coastal waves that depended on nonzero f, and thus, y. Now we have a y2 dependence that works both to the 

north and south with the same propagation direction.

 If we write U2(x – ct) = cψ(x – ct), where ψ is a dimensionless wave form in the x-direction, equatorial 

Kelvin wave solution can be written:

EKW have the following properties:

- propagates eastwards

- non-dispersive

- maximum on equator 

Cf. coastal Kelvin wave, propped up against the coast. 

An EKW is “propped up” against another equatorial Kelvin wave.

𝑈2~𝑒
−
𝛽
2𝑐
𝑦2𝑈1~𝑒

𝛽
2𝑐
𝑦2



Now we allow wavelike variations in the zonal direction including for v

Note that we specify u and η in phase with one another, but v is in quadrature with them.

Substitution into equatorial shallow water equations …

The general solution

rotational flow divergent flow

𝑢 = ෤𝑢 𝑦 𝑒𝑖 𝑙𝑥−𝑤𝑡 𝑣 = ෤𝑣 𝑦 𝑒
𝑖 𝑙𝑥−𝑤𝑡+

𝜋
2 𝜂 = ෤𝜂 𝑦 𝑒𝑖 𝑙𝑥−𝑤𝑡



details

𝑣 in quadrature with 𝑢, 

+ or - makes no difference, we choose +

We want to eliminate 𝒖 and 𝜼 to get an equation for 𝒗.

We drop tildes and prime on 𝑔, and we use subscript notation 

for derivatives. The linear system can be written:



details







or

𝑐 is the gravity wave speed)

where



Now we allow wavelike variations in the zonal direction including for v

Note that we specify u and η in phase with one another, but v is in quadrature with them.

Substitution into equatorial shallow water equations gives

where

Y is the width of the “equatorial waveguide”. 

Y depends on wavelength and frequency but scales similar to Req.

It represents the zone in which we have some meridional wave structure. 

Outside this zone the amplitude decays exponentially with latitude.

The general solution

rotational flow divergent flow

y < Y :  oscillating solutions in y

y > Y :  decaying solutions in y

𝑦

0−𝑌 𝑌

𝑌2 =
𝜔2

𝑐2
− 𝑙2 −

𝛽𝑙

𝜔

𝑐2

𝛽2
𝑑2 ෤𝑣

𝑑𝑦2
+
𝛽2

𝑐2
𝑌2 − 𝑦2 ෤𝑣 = 0

𝑢 = ෤𝑢 𝑦 𝑒𝑖 𝑙𝑥−𝑤𝑡 𝑣 = ෤𝑣 𝑦 𝑒
𝑖 𝑙𝑥−𝑤𝑡+

𝜋
2 𝜂 = ෤𝜂 𝑦 𝑒𝑖 𝑙𝑥−𝑤𝑡



Meridional structure

It can be shown that the general solution is of the form

and substitution of this form into the differential equation 

for v leads to the dispersion relation

In fact this is a set of dispersion relations corresponding to 

a discrete set of meridional structures Hn(y’), the “Hermite 

polynomials”.

Symmetric structures for v: n=0,2,4...

Anti-symmetric structures for v: n=1,3,5...

Remember that 𝑢 and 𝜂 have opposite symmetry to 𝑣 Cross-equatorial flow 

and anti-symmetric 𝜂

No  cross-equatorial flow 

(convergence/divergence) 

and symmetric thermocline 

displacements

𝐻0 𝑦′ = 1
𝐻1 𝑦′ = 2𝑦′

𝐻2 𝑦′ = 4𝑦′
2
− 2

𝐻3 𝑦′ = 8𝑦′
3
− 12𝑦′

𝐻4 𝑦′ = 16𝑦′
4
− 48𝑦′

2
− 12 …

𝑦′𝐻𝑛 = 𝑛𝐻𝑛−1 +
1

2
𝐻𝑛+1

𝑑𝐻𝑛
𝑑𝑦′

= 2𝑛𝐻𝑛−1

𝜔2

𝑐2
− 𝑙2 −

𝛽𝑙

𝜔
= 2𝑛 + 1

𝛽

𝑐
=

2𝑛 + 1

𝑅𝑒𝑞
2



details

dropping primes solution

should lead to non-dimensional dispersion relation

using and



details

so

thus



The dispersion relations

 Substitution of the general solutions into the differential equation for v leads to a set of 

dispersion relations:

 The entire family of equatorially trapped waves:

 There are 3 roots for each value of n ≥ 1.

 The largest roots are for high frequencies 

(T < Teq).  They are inertia-gravity waves 

slightly modified by the beta effect.

 The smaller root for ω are equatorial

Rossby waves

 A mixed Rossby / Inertia Gravity wave 

(sometimes called “Yanai wave”) exists for 

n = 0.

 The special case of v = 0 corresponds to 

n = –1, this is the Kelvin wave.

𝜔2

𝑐2
− 𝑙2 −

𝛽𝑙

𝜔
= 2𝑛 + 1

𝛽

𝑐

𝜔 = 𝜔 𝑙, 𝑛



Wave properties

 Odd order waves (n = –1,1,3..) are symmetric in η : Kelvin, 

Rossby and Inertia Gravity waves.

 Even order waves (n = 0,2...) are antisymmetric in η : mixed 

Rossby-Gravity waves

𝒏 = 𝟏, 𝒍∗ = 𝟏
Equatorial Rossby wave

L H

HL

−𝝅 − 𝝅/𝟐 𝟎 𝝅/𝟐 𝝅

𝒏 = 𝟎, 𝒍∗ = 𝟏
Mixed Rossby-gravity wave

H

H L

L

−𝝅 − 𝝅/𝟐 𝟎 𝝅/𝟐 𝝅

𝒏 = −𝟏, 𝒍∗ = 𝟏
Equatorial Kelvin wave

−𝝅 − 𝝅/𝟐 𝟎 𝝅/𝟐 𝝅

HL

𝒏 = 𝟏, 𝒍∗ = 𝟏
Westward IG wave

−𝝅 − 𝝅/𝟐 𝟎 𝝅/𝟐 𝝅

H L

L

L

H

H

𝒏 = 𝟐, 𝒍∗ = 𝟏
Eastward IG wave

H

L

L

H

−𝝅 − 𝝅/𝟐 𝟎 𝝅/𝟐 𝝅

L H

H L



n1 Equatorial wave structures

from Matsuno (1966)

from Matsuno (1966)



Equatorial Rossby waves

=> k negative, Rossby waves have westward phase propagation.

But the group velocity depends on the wavelength.

In practice the shorter Rossby waves with eastward group 

propagation are of little importance because they are dispersive, 

slow, and tend to dissipate.

𝜔2

𝑐2
− 𝑙2 −

𝛽𝑙

𝜔
=
2𝑛 + 1

𝑅𝑒𝑞
2

𝜔 = −
𝛽𝑙

𝑙2 + 2𝑛 + 1 𝑅𝑒𝑞
−2

𝜔

𝛽𝑎

𝑎𝑙

𝜔 ≈ −𝛽/𝑙

1

8
𝛽𝑎2
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group speed
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Eastward
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Maximum Eastward 
group speed

Short
planetary waves

-3                                     -2     - 3 -1                                       0
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Maximum Westward 
phase and group speeds

-𝛽𝑎2

At low frequencies ω << f



Equatorial Rossby rays

Generally as a wave propagates its dispersion relation changes.

This is because it may change latitude, and f enters into the dispersion relation. 

We will consider that f is “slowly varying”. The direction of the group velocity is given by

(for long R-waves)

Waves of constant frequency and zonal wavenumber 

will change their meridional wavenumber and thus 

their direction of propagation. 

- they end up oscillating about the equator by refraction

- its another way to show that they are “equatorially 

trapped”

- this behaviour is modified by the presence of mean 

currents

100° 50° 0°

30°N

30°S

Equator



Oceanic adjustment

An abrupt change in the wind forcing can generate waves.

In this experiment an initial bell shaped perturbation to the thermocline is allowed to 

dissipate in a shallow water model. We see the single bulge (n = –1) Kelvin wave 

propagating eastwards and the double bulge (n = 1) Rossby wave propagating westwards.



ENSO theories: the delayed oscillator

A mechanism proposed to explain how El Niño can cancel itself out the following season. 

Depends on wave reflection at boundaries. 
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SCEMATIC SURFACE CURRENTS and THERMOCLINE DEPTH



ENSO theories: the delayed oscillator

The upwelling Rossby wave at the base of the thermocline becomes an upwelling Kelvin 

wave traveling the other way. In the meantime, the original Kelvin wave leaks energy away 

at the eastern side of the basin through coastal Kelvin waves

KR
dw

up

El Niño

Kup

?

Kup



Tropical convection in the atmosphere

 Divergence    ➢ downward motion ➢ evaporation ➢ clear sky

 Convergence ➢ upward motion      ➢ condensation➢ clouds



Tropical convection in the atmosphere

Wheeler-Kiladis space-time variance spectra

SYMMETRIC ANTISYMMETRIC



Scale interactions in the atmosphere and ocean

 Large-scale forcing and transport due to transient systems

 Closure and diffusion

 Modification of large-scale potential vorticity: Impact on ocean circulation.

 Long-lived features of the atmosphere and low frequency variability.

 Atmospheric response to forcing anomalies. 

 The wave-turbulence crossover and zonal jets



250 mb relative vorticity (ERAi DJF)



Restratification of the Labrador Sea (MEOM)

(Chanut et al 2008)



An eddy that gets stretched out and deformed

by a jet, will produce a convergent momentum 

flux that maintains the jet against dissipation. 

Geostrophic nondivergent mean flow ->

Example: Momentum transport in zonal jets



 So far we have looked at small perturbations, linear systems, oscillating or exponentially growing / 

decaying solutions. 

 Consider nonlinear system                                               or

 Tendency equation for q

 Budget equation for ത𝑞

 If we have steady unforced flow

 This describes a closed circulation - q contours coincide with ψ contours.

So nonlinearity is associated with closed circulations

If the closed circulation is large scale, this describes a gyre.

If the closed circulation is small scale, we need to relate it to the large-scale circulation. 

General considerations for tracer transport

mean flow 

advection

linear waves turbulence

transient “forcing”

𝑞 = ത𝑞 + 𝑞′ 𝜓 = ത𝜓 + 𝜓′



Forcing due to transients: Closure

 Imagine we wish to simulate or predict the slow, large-scale flow. Because the system is nonlinear the 

fast, small-scale component (maybe unresolved) will affect the slow, large scale. 

 Consider the nonlinear system

 The average is

 But the problem is that it’s 

 Multiply the equation by u and take time mean 

 This gives us an equation for       , but now we have a cubic term !

In general we need to represent the (n + 1)th order term in terms of the nth order term. 

We must make additional physical assumptions to do this.

 What is the relation between the transport of transients and the mean flow?



Diffusion and diffusivity

 Let’s go back to our tracer equation and consider a diffusive representation for the flux of the tracer q. For 
the moment we ignore other forms of forcing and dissipation. Consider advection by a nondivergent flow:

take an ensemble average

 Let’s represent this eddy covariance through analogy with molecular diffusion, i.e. transport down the 
mean gradient:

 So where 𝑭 is the diffusive flux of q.

 In general, K is a second rank tensor. It is usually not isotropic for large-scale flows. 

 For example

 We can estimate                      where 𝑣’ is a typical eddy velocity and 𝑙’ is a”mixing length” 
(various scalings can be used).

But it can be more complicated…

hot cold

Thermal transfert
through conduction

metal
bar



Symmetric and asymmetric diffusion

 If we decompose K into symmetric and antisymmetric parts 𝑲 = 𝑺 + 𝑨.

 Isotropic diffusion corresponds to

and the diffusive flux                           is downgradient.

 But if K is antisymmetric and the flux is parallel to contours of q.

(if A has zero diagonal and opposite sign off-diagonal elements then )

 The flux is neither upgradient nor downgradient. It’s called  a “skew flux”. 

 A skew flux is equivalent to advection by a nondivergent flow with velocity

The elements of A can be expressed in terms of ψ

 Whether or not it is appropriate to use a downgradient diffusion depends on the quantity being diffused. 

We might expect conserved quantities to behave like tracers, with diffusion eroding their gradients. 

For non-conserved quantities more elaborate schemes need to be considered.

𝐴𝒙 ⊥ 𝒙



Parameterization

Sophisticated parameterization schemes 

use physical assumptions to determine the 

elements of the tensor K. 

This often involves a symmetric part and 

an antisymmetric part so the scheme will 

be equivalent to a diffusion along the 

gradient of the tracer plus an advection by 

a residual flow. 

An example is the Gent and McWilliams 

scheme, which hypothesizes energy 

conversion by baroclinic instability and 

formulates the eddy closure in terms of 

asymmetric diffusion of thickness. Such a 

scheme will tilt density contours to liberate 

available potential energy, rather than just 

erode gradients. 

Other schemes have been formulated in 

terms of potential vorticity diffusion, or in 

terms of flow dependent coefficients of K.

 Whether or not it is appropriate to use a downgradient diffusion depends on the quantity being diffused. 

We might expect conserved quantities to behave like tracers, with diffusion eroding their gradients. 

For non-conserved quantities more elaborate schemes need to be considered. 

warm

cold

𝜃3

𝜃2

𝜃1

𝜃0 ෥𝑤 = 0

෤𝑣෤𝑣

෤𝑣 ෤𝑣

෥𝑤෥𝑤 ෥𝑤



Potential vorticity homogenization

 Let’s look again at our tracer equation for q, and add in some downgradient diffusion

 For steady nondivergent flow in a region isolated from the source S

 Integrate over a region enclosed by a contour of q.

 The left hand side integrates to zero

 So the right hand side must also be zero

 This cannot be true if the contour encloses an extremum of q. 
The gradient of q must integrate to zero around this contour.
So there can be no extremum of q within the contour. 

 Gradients of q are eliminated, resulting in Homogenization
to a uniform value in regions remote from sources of q.

Away from forcing 
(in depth)

Diffusion
(∇𝜙)

Advection
(𝒖𝜙)

Ψ = Ψ0



Examples in models and observations

Observed PV on isopycnal surfaces

thermocline

sub-

thermocline

(Keffer 1985)

𝑞

𝜓

QG model - mid-level PV



Two extreme paradigms of gyre-scale flow: 

A Stommel gyre has different vorticity balance in different regions

Flow is forced south across contours of planetary vorticity. Its 

changing vorticity is supplied by forcing and dissipation.

A Fofonoff gyre corresponds to unforced flow, so the balance is 

between advection of planetary vorticity and relative vorticity. 

or

so

Flow conserves its absolute vorticity, so contours of absolute 

vorticity are parallel to contours of the streamfunction.

Stommel vs Fofonoff



In a Fofonoff gyre we don’t know the relathionship between q and ψ, so the strength of the flow is not 

constrained. Let’s assume that the relation is linear, and reintroduce some forcing and downgradient diffusion 

of q.

Integrating within a streamline of ψ:

so

Diffusion and the strength of the gyre

- The relationship between q and ψ is determined by integrals 

of forcing and dissipation around the closed gyre circulation. 

- Integrated eddy diffusion provides the link between the q / ψ 

relationship and the strength of the circulation.

- In regions isolated from forcing, the numerator is zero but 

the denominator is non-zero, so the field of q must be 

uniform. q is homogenized. 



Long-lived atmospheric flow anomalies

Can we imagine similar mechanisms at work within closed 
atmospheric circulations ?

How are low-frequency patterns in the atmosphere maintained 
against dissipation ?

Transient fluxes of heat and vorticity have rotational and 
divergent components. 

The divergent components are associated with development 
or maintenance of long-lived structures.

Observational analyses consistently show that high-frequency 
transient eddy vorticity fluxes reinforce the low-frequency 
patterns, while transient thermal fluxes dissipate them. 

Some anomaly structures may be well configured for 
maintenance by transients

PNA height field and tendency due to vorticity fluxes 

PNA temperature field and tendency due to heat fluxes 

(Sheng et al 1998)

Transient potential 

vorticity flux divergence 

in an idealised model of 

atmospheric blocking

(Haines and Marshall, 1987)

L

H

L

C

W

C

Transient thermal fluxes Low-frequency thermal fluxes 

Transient eddy vorticity fluxes Low-frequency vorticity fluxes 

Wave maker



The response is not the same as 

before. 

Transient feedback on a forced response

Imagine the generic development

Use G to force an empirical GCM

Add a perturbation to the forcing (say 

an SSTA)

No development ! 

Now add the perturbation. 

We can also diagnose the difference 

in transient forcing Δ(v’.▽q’).

Now run the same model but force 

with H, and initialise with ത𝑞

 The difference between runs gives 

the average response Δq. 

Time average of this

“Forcing” for mean flow can be written

(Hall et al 2001)

SET1

SET2



The response is not the same as 

before. 

Transient feedback on a forced response

Imagine the generic development

Use G to force an empirical GCM

Add a perturbation to the forcing (say 

an SSTA)

No development ! 

Now add the perturbation. 

We can also diagnose the difference 

in transient forcing Δ(v’.▽q’).

Now run the same model but force 

with H, and initialise with ത𝑞

 The difference between runs gives 

the average response Δq. 

Time average of this

“Forcing” for mean flow can be written

(Hall et al 2001)

SET1

SET2

But if we add the extra transient 

forcing

The linear 

model gives a

good approximation 

to the full response

SET3



The importance of nonlinearity

There is no doubt that atmospheric dynamics is nonlinear. 

One need only look at the difference between cyclones and 

anticyclones.

Does this mean we need a nonlinear framework to analyse 

lower frequency variability ?

Non-Gaussian and even multi-modal statistics are features of 

nonlinear systems. 

But synoptic timescale nonlinearity can be represented as 

stochastic noise plus linear damping. 

The response of a linear system to external forcing can be 

written:

This linear system yields Gaussian statistics if B is constant, 

but can deliver non-Gaussian unimodal statistics if B=B(x). 

Lorenz 

system

Monthly mean 500mb height

EOF2

EOF1

(Overland et al 2008)

state vector external forcing Gaussian noise

linear operators

(Sardeshmukh and Sura, 2009)



Altimetric observations and high resolution models 

have shown that the large scale ocean circulation on 

timescales of a few months is characterised by zonal 

jets of alternating sign. 

Zonal jets revisited: Ocean currents

Satellite observations

(Maximenko et al 2005)

Ocean model

(Richards et al 2006)



Wave-Turbulence crossover

Remember the Rossby radius ? The length scale on 

which relative vorticity and vortex stretching make 

equal contributions to potential vorticity:

Now let’s consider larger scales. Compare advection 

of planetary and relative vorticity:

Scale analysis of this ->

This is called the “Rhines scale”, where Rossby 

waves give way to turbulence. 

Compare Rossby wave frequency with a typical 

turbulence inverse timescale
This leads to an anisotropic boundary in wavenumber 

space between waves and turbulence



Collapse to zonal jets

Physically, Rossby wave solutions exist inside the 

dumbell. Scale transfer is not possible in this 

region. Cascade is therefore towards kx = 0, ky ≠ 0. 

This implies zonal jets separated in latitude by 

scale kβ.



Scale separation and boundary conditions


