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1) Shallow water and vorticity

2) Quasi-geostrophic theory

3) Rossby waves and instability

4) Gravity waves and tropical dynamics

5) Scale interactions in the atmosphere and ocean

Some things | hope you already know about:

Partial differential equations, vector calculus, the Coriolis force
and geostrophy, the basic equations of motion, vorticity and
divergence.

Books:

Introduction to GFD - Cushman-Roisin
Introduction to Dynamical Meteorology - Holton
Geophysical Fluid Dynamics - Pedlosky
Atmospheric and Oceanic Fluid Dynamics - Vallis
El Nifo - Philander

Questions ?
- before the exam you are always priority number one.
- after the exam you might find it hard to get my attention.



http://www.legos.obs-mip.fr/hall

Some concepts to discuss
rotation, stratification,

Development, balance, nonlinearity,
homogeneous-boussinesg-anelastic,
barotropic-baroclinic,
stationary-transient

The variables we use
wind/current, pressure, density...
layer thickness, vorticity, divergence,
streamfunction, velocity potential

The shallow water equations
coordinate transformation

reduced gravity,

external and internal modes

Circulation and vorticity
the circulation theorem

the vorticity equation
potential vorticity
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The momentum eguations

The familiar (!) equations for x and y momentum:

op _ _ hydrostat
? - 1op 5, = P9 ydrostatic
ot pOx 8_u 1 @ + 8_'w =0 continuity
v 1 dp or Oy 0z
it + fuF —— & 2
ot p Oy dp dp Op 0p 0°p

development  nonlinear rotation Ty ——

notes:

Strictly speaking, if the flow is balanced then it will not develop. Not much use for prediction.

The nonlinear terms are the advection terms. A linear system can still develop through wave solutions, and
can still transport perturbation properties with the flow.

We have five variables: three wind components, density and pressure.

There are five equations if we add hydrostatic balance, continuity and a thermodynamic/density equation.
(if we add temperature as a variable then it is linked to density and pressure by the equation of state).

For an incompressible hydrostatic fluid, only the momentum and thermodynamic/density equations are
prognostic. Continuity and hydrostatic balance are diagnostic.



Geostrophic hydrostatic flow

Geostrophic flow is possible with no density variations (homogeneous). But when density
varies, things get interesting:

Geostrophic - hydrostatic flow -> Thermal Wind Balance (with the Boussinesq approximation)  Celd ? Warm
Op Op %p ov 0p ‘z v
_pofvga a. — P9 pof—g = —95 X . @q .
Ox 0z 0x0z 0z Oz Lower Higher
pressure pressure

So horizontal gradients of density (or temperature) are related to vertical gradients of geostrophic flow.

And now in pressure coordinates without the approximation on density:

op| _ opox| _ . op_
or|, 0Oz Oxp_pvg’ 8z 17
0z _fv, 0:__1 ‘ b~
oz|, g Op  pg 5

azz_i%_ 1 0O

0xdp g Op g Ox

— P1 P2
p \P v

So without approximation we can say that vertical (pressure) gradients of the geostrophic wind depend on
horizontal gradients of density.

This analysis also reveals that if density is a function of pressure, then the geostrophic wind must be vertically
uniform -> “Barotropic flow”.



Density and Its variations

The way in which density varies can have important consequences for the flow. Here are
the definitions for various levels of approximation:

ov
Homogeneous: p=po (o' =0), p=po(2)+p(z,y,t) = 5 = 0
Boussinesq: P = po+ P’(ﬂ’iaya 2y t)a P = PO(Z) + P,(% Y, =, t)
Anelastic: P = Po (z) + p'(:c, Y, 2, t)
ov
Barotropic: p=plp) = O—zg =0
Baroclinic: p 7 p(p)

Later we will use the shallow water model.

This represents a Boussinesq fluid with a set of homogeneous layers. Density is piecewise constant.
Pressure varies continuously in the vertical and in the horizontal (but horizonal gradients of pressure will be
piecewise constant).



Barotropic and baroclinic flow

We have seen that in some circumstances the flow is vertically coherent. Depth
independent flow is associated with the “barotropic” component, also referred to as the
“external” mode (more on this later). Bartotropic flow can exhibit many phenomena:

vortices, Rossby waves, jets and instabllity. It is a good starting point for theories of the
large scale ocean circulation.

When density surfaces cross pressure surfaces the flow is “baroclinic”. The baroclinic
component is associated with horizontal temperature gradients: fronts and developing
cyclones; ocean eddies on the thermocline. Baroclinic processes are necessary to liberate
potential energy and generate circulation. Baroclinic instability occurs on a preferred scale
(the Rossby radius) and is important for generating geostrophic turbulence.



Stationary and transient flow

geopotential height (m) s00mb DJF

Stationary waves ¢ = [¢] + ¢*, [vT]| = [v|[T] + [v*T"]

This is the departure from the zonal mean. The flux produced by any flow
structure, the time mean for example, can be decomposed into components
effected by the zonal mean (Hadley, Ferrel cells) and by the stationary
waves.

Transient eddies ¢ =¢+ ¢, vT =0T +v'T’

This is the departure from the time mean. The flux due to time variations is
an important part of the mean flux.

Transient eddy “forcing”

Consider the maintenance of the time mean flow:

%—f—I—V.VTZF—D, vVT =-—Vv VT'+F-D

The mean effect of transient eddies is sometimes viewed as a forcing term
the contributes to to the maintenance of the time-mean state.

These mechanisms depend on nonlinear terms, and may lead to nonlinear
behaviour on longer timescales (but not necessarily).

Nonlinearity often manifests as asymmetry




Some scaling parameters

The importance of rotation: the Rossby number

. _ - ou U
Compare the advection term with the Coriolis force U—— fu — R, = —
oz fL
When the Rossby number is small the flow is close to geostrophic
The importance of stratification: the Froude number
ou 1 0p . . . . .
For nonrotating steady flow 44— = ———=  compare vertical divergence with horizontal divergence
oz p Ox
Ow 8_u — F. = v v The Froude number is the ratio of flow

0z /| Or NH Vg Vo H speed to internal gravity wave speed.

When the Froude number is small stratification is important, vertical excursions of the flow are limited.

R, NH JH

E.  fL — fL

When the Burger number is ~1, vorticity advection balances vortex stretching.

N =

Rotation vs Stratification: the Burger number (B,)

This occurs at a special spatial scale... Recall
/
The Rossby radius: | Lg = NH _ VY H paz H
f f (9" = gAp/p)



Equation sets and variables

The primitive equations  u,v,w,p, p
essentially five variables, three prognostic equations and two diagnostic equations

The shallow water tions wu,v,h 0 d
threee?/arailalges tha:eee oanostc equat dy = _lpdx T _Ipdy =0
) prognostic equations ax ay
The quasi-geostrophic equations %, ¢ Along a streamline: dip = 0

one variable, one prognostic equation, one definition />\>_/

) = consg —

Streamfunction and velocity potential (revision)

The vector horizontal velocity can be written as two scalars v = (u,v) = —V¢ + kA V)
0p Oy 0 Oy
S U= —— — —, —— 4 =
Oox Oy oy Ox

@ is the velocity potential. Divergent flow emanates from maxima of @.
w is the streamfunction. Nondivergent flow circulates clockwise round maxima of y.

If the flow is either nondivergent or irrotational we can economise one variable.
Quasi-geostrophic flow is nondivergent so we only need .

Furthermore, divergence, D = V.v = —V?¢ and relative vorticity, & = k.V.v = V24



Alternative vertical coordinates

We can simplify the equations if we use a conserved quantity as the vertical coordinate. In this frame of
reference there is no “vertical velocity”, rendering the system two-dimensional. So we can reduce our
equation set by using coordinate systems based on density in the ocean or potential temperature in the
atmosphere. But the price we pay for this simplification is to complicate the boundary conditions: coordinate
surfaces outcrop, they move in time, and our coordinates are no longer orthogonal.

General coordinate transformation:

i o bo—da _do—bp (&z) (gt 7
el s dx 6z oz ox /
5, oz, 0z — 0 01 /
0¢ 0 (82‘ ) 0¢
> —| = + 5
ba ox OB T Oz |, 0z \ Or|, Oz |, 02
0p| _ 0| _0¢ 0z
P2 «
o¢ _ 0s 0¢ 2] | rule 2
0z 0z O0s




Density coordinates

Let’s transform the primitive equations to density coordinates for isopycnal flow in a
Boussinesq fluid:

Hydrostati ti op = op z(l2)
rostatic equation: — = — — = —pg— (rule
y q 52 PY p Pg p
_ _ oP
Define “Montgomery potential”’as P = p + pgz, = G_p = gz
_ Du 1 Op 1 OP
Momentum equations: — — fv =—— —| = ——— (rule 1)
Dt po Oz |_ po Ox
@ U % _I_ v @ — TV = _ia_P
. . . . ot Oz dy ~ po O
and if p is conserved, no equivalent of vertical velocity so P o
Ov Bv| . dv| . 10P
ot ox ) oy ) ~ po Oy
o ou ov ow
Continuity: —| + —| + — =0
Or|, Oy|, Oz
5 (2)4 2] (u2) 4 2] (u22) o
apply rules 1 and 2 and after some manipulation: ot \ dp Or ) 0 dy , p
This is mass conservation expressed in terms of a flux of 0z o i

layer thickness. The final step to a layer model is to discretize: 3_p - Ap



detalls

HYDROSTATIC EQUATION:
1) We write the basic hydrostatic balance equation in z:
dp B

2a) We use rule [2], and we get:

dpop _
dzdp

2b) We multiply both sides by g—;:

0z ap N 0
s — —_—=
ap P9 ap
3) We introduce a new variable P, called the Montgomery potential, defined
as: P = p + pgz, such that:

0P _o(p+pgz) _ 6_p+ d(pgz)
dp dp ~dp dp

dp _
dp pgap

6P_6p+ Bz+

4) We simplify this equation, using the hydrostatic equilibrium equation as
written in (2b) to obtain the hydrostatic equation in density coordinate:

oP
ap_gz

5) Analysis of the Montgomery potential in a layer with homogeneous p.
= Let’s focus on one point in space, at the position (x, y), where the sea level is at the
position z = 7, relative to an equilibrium position z = 0.

= At the sea level, the p is constant and equal to p = pg xy-

Let’s now dive at the vertical of the point.
According to the hydrostatic equilibrium, when going down the pressure continuously
increases with depth.

At z = —100m below the sea level, the pressure is: p_100x,y = Paxy + pg X 100.
And at z = —123m below the sea level, the pressure is p_123 xy = Pax,y + pg X 123.
The layer being thicker than 123 meters (h > 123m).

Based on the definition of the Montgomery potential, P = p + pgz, P remains constant
in the vertical within this homogeneous layer, such that P_1¢¢ xy = P_123,y- This is true
at any point in space (x,y)!

= At any point in space, the Montgomery potential P is vertically homogenous in the
whole layer.
= At another position (x',y'), the sea level is not at the same level, and the
Montgomery potential has a different value P’, which is also constant on the vertical.

MOMENTUM EQUATION:

1) We write the x-momentum equation in z: U fv=-— ia_p
t Po 0x ;
2) We use rule [1], and we get: % — fv= _i a_p _ a_p%
t Po |9x dz 0x
p p
3) We use the hydrostatic balance: — — fp = _l a_p pg% = _l M
Dt Po | 0x 0x ) Po 0x )
4) We replace with the Montgomery potential (P = p + pgz): % — fv = _ia_P
Dt Po 0x p
5) As density is conserved, there is no vertical velocity. Developing D /Dt yields:
ou - ou i ou 1 0P likewi v v Jv 1 0P
—+tu— vV—| —fr=——— ikewise: — — — = ———
at d dy po Ox t T “ox +v6y +fu po 0y
p p p p
N z=20
P h P(x,y)
H /\/—
M z=—H

’_
* In the middle of point (x,y) and (x’,y"), we can estimate Z—Z by %. The horizontal

gradient will also be constant on the vertical of the position. It will be vertically
homogenous in the whole layer.

L : . 0P, .
= At one point in space, the Montgomery potential gradient Pl vertically

homogenous in the whole layer. And as a consequence, at any point in space, the zonal

and meridional currents (u, v) are also vertically homogenous in the whole layer.
aP

Iaxl

. - . . . opP
spatially constant, as the sea level varies in function of the spatial position, P,a, u,v are

= At any point in space, p, P u,v can be discretized in the vertical. Even if p is

not constant in space.




CONTINUITY EQUATION:

1) We write the basic continuity equation in z without the meridional contribution:

du 6W =
ax az
- We get: 3a) Now we work only on the last term 3—2’:
Jdu Ju 0z 6W @ I _ i (%)
ox 0z ax az dp \Dt
p au - 3b) We expand the variation in z, such
2b) Use of rude [2], for -~ and _~ term: there is a local time variation and some
Jul  dpdudz N dpaw _ i advection of slope <%| ):
0x 0z dp 0x 0z dp P
& & ; _ 0 |0z 0z
2c¢) Multiply this equation by a—Z: - % ot T ua ,
0zou| %5_11% 919 ow —0 3c) We develop, the last term being the
dp 0x p 8z dp 0x p 8z ap vertical gradient of density slopes. We get

= This leads to equation (1): equation (2):

0z du du oz N _ I: 0%z +6_u% +u
apaxp apaxp = dpadt apaxp

0%z
dpox
p

4) Now we inject equation (2) into equation (1):

o, 0o _
+ =0

dpdx|, 0dpox
5) We simplify the two _a_| terms that cancels out:

dp ax

Ju
0x
p

6) All the terms have a —. We rearrange the order of the derivatives in the last terms:

ou| 0 0 .
ot Yox -

ox
p
7) We put the time derivative first, and then we factorize the last terms:

(o) {e) o

8) Considering a discreet representation with layers of constant density p,,
d ho. . o
5 becomes v with h the thickness of a layer, and Ap a standard density difference

between two adjacent layers. The continuity equation (without meridional term) writes:

THERMODYNAMIC EQUATION (density equation):

1) We write the basic continuity equation.

* In any coordinate system (Boussinesq fluid — incompressible):
Dp

Dz 0
* In z coordinate system:
ap ap ap dp
ot tu ax ay Yoz~ 0
i.e.: 6_p+ ap ap +%6_p=
at ax ay dt 0z

2) On a surface of constant p, z varies. To make z the variable and p the coordinate,
we rewrite this equation swapping the variables:
dz 0z 0z az dp 0z

at ot Y ax Vot atan

= The last term is zero, because p is conserved. This gives us an equation for w



Shallow water layers

Apply the hydrostatic equation across
the layer interface zi (ignoring atmospheric

ressure gradients
p g ) z=0
Py = pog(—H + ha + hy) {+pa}
0P AP P, — P H A
° Ap P
P, — Py = Apg(—H + hy) Iy P=PoT AP 1
z=—H
Horizontal gradients of P take the following forms (where D = h1 + hy)
1 0P 0D " N For two layers
— —— =0 and in general, for N layers
po 0z 70z ) Y - (9
18P, 8D ,0hs 1P 8D , 0h
— Q- =95 19 5 — =9 +t9C_—
po Ox ox ox po Ox ox ox For the general N-layer case
000 .. \
The first term on the right is the “external mode”, associated with fast 0 1 1 ..
surface waves. The terms involving the matrix C are the “internal o= 0 4~
modes” associated with slow waves on the layer interfaces. We have \ : : }
N -1

a set of linear expressions for the horizontal pressure gradient that
we can decouple by finding the eigenvectors of C.



The shallow water equations

Now we have expressions for the Montgomery potential we can eliminate it, discretize the
stratification and write the equation set in terms of u,v and h: first for two layers, i=1,2

Ou,; ou; 8u@ Ohs
o fui=—97 (h1 +he) —g'—— o
ov; ov; 8'0% ,Ohy S_this term
Y + U; 57 + fu; = —ga (h1 + h2) -9 = By Ju'ls:tzfor
Oh; 0 0
5 + %(u@h@) + 8—y(v@h@) =0

And for N layers the momentum equations are

Du,,, — fu; = _g@_D _ g C(‘?h where h is the column vector (hy, hz, ....)
Ox oz |,



The thermocline and the abyss

Instead of having a free surface and a flat bottom, we can reconfigure to have a rigid lid
and a motionless abyss. This is sometimes called a 1'/> layer model.

The equations are the same except we replace g with g’

g
Dv _ _(noh
Dt+fu_ g ox
oh 0 0 ,

E‘Fa(lth)ﬁ'@(vh):() \_g/_\

With a rigid lid we lose the external mode. In the general case (N layers) the x-momentum
equation becomes

[ N N-1 N-2 1)
N-1 N-1 N-2 1
Dui—f'u-:—g' Ca—h c—| N-2 N-2 N-2 1
Dt ’ oz |, ; ' '
\ 1 1 1 1/

Note that C has been flipped, and stripped of its zeros. One extra internal mode replaces the external mode
associated with the free surface in the previous system. All the gravity waves are slow.



Thermal wind revisited

Wind Sensor,

Geostrophic hydrostatic balance is quite elegant in density coordinates T‘
62 6 2 < A > Sensor .J!i::
8z0p 10 f — 99, Vi = Uz IR

g p iy

Application: fronts in the atmosphere o vl lrf .
ov g 0z ; g 0z N AN
Op  pof Oz|, ’ f oz,

|I
II
Ire Rops =,
“Margules relation”, southerlies increase with height X || | e
g

Application: currents in the ocean |

When youre floating on a free surface it’s impossible to measure pressure independently of depth. ||

Since the density of water is 1000x the density of air, pressure surfaces are almost flat, making it ..?s'?-:.-"'..-t:-.:-_|||

:

very difficult to measure horizontal gradients. You have to make do with temperature and salinity |

(and thence density). .'
Measure vertical profiles at two points to see how the position of the thermocline varies

horizontally.
The slope of the thermocline gives you the difference in current across it.

Sometimes oceanographers call this the “geostrophic current”. , "
This assumes that the abyssal flow is weak, or that there is a “level of no motion”. |

Final note: Thermal wind balance is nothing more than the horizontal component of the vorticity i‘ o
eguation... Bg—— i



Circulation and vorticity

Circulation is the fluid equivalent of angular momentum. It is defined over a region as

C:%V.dl

dC dv 1
Taking the time derivative gives dt dt dl + fd(v V)
dl
and if d_v = _EVp then g — _ d_p
dt P dt P v

So over a fixed region, circulation can only be generated by baroclinic processes p # p(p)

Vorticity is the point quantity of which circulation is the integral

C = fv dl = f (Vav)dA
Oov

v/\v—%—a—y—s Vi ¢ =9

Positive vorticity is anticlockwise curvature shear

For solid body rotation C' = 27Qr?, € = 2Q



The vorticity equation

8—u—|—ua—u fva—u—f'u— -8—h-—|—7' - D, (1)

ot or Oy oz ° 7 T and ‘D are sources
Ov ov oy Ov v fu— '6h' N D, (2 and sinks of momentum
ot " ap oy T gy TPy (2

d/dx(2) - didy(1) =>

D [(0Ov Ou ov Ou ou Ov
— — = — — 4+ — —D
(2 3) " 17 (5 ) ) (s + )+ RO - )

Sverdrup balance

or to put it another way

[gt +VV] (f+8)=-(F+EV.v+

This is the barotropic vorticity equation.

If the flow is nondivergent it works in individual layers, and absolute vorticity is conserved.

Vorticity can be generated and dissipated by mechanical stress at the boundaries (this is the basis of ocean
circulation theory).

Vorticity can be generated by divergence, and divergence is associated with vertical displacement of layer
boundaries - otherwise known as “vortex stretching” - which leads to coupling between the layers.

VO(ticity can also be gene_rated by “sol_enoidal” processes, 1 Op 10p 1
which we have neglected in our Boussinesq fluid 5 r 5 — —ZJ(PaP)
(cf circulation theorem) po 0T pox P



The vorticity eguation

Effectively take the curl of the momentum equation. We'll do it by components:

0 ou Ou Ou Ou o __lOp
By ot oz ey "o p Oz
a . v v v __Llop
+E:"-‘m : 3£+u5 +v3y+waz+fu— o

Rearrange the left hand side assuming we can swap the order of derivatives where
necessary (smooth functions):

's) i i du du d [ du
5 |5 + - |
v du d (du du dv a (v
'aa‘“ay( )*“*“‘(5)

ﬂﬂa‘v i [0 fJ'H fj'n d (ou
"5ty PG o o U T
}_du_tj'i wa v
Or 0z | Oz \ 0z}
af _[m-  du

t {
iy Odr

hy

Terms that cancel have been highlighted, along with necessary swapping of coordinates in
the derivatives. This leads to

8 [Bu v
B’t+(3:r: By

we now evaluate the right hand side

1 E ap i (I) ilp
RHS ==
"oy ) o

lﬂ -ﬂp ad 1\ dp
Qe \oyD  ox \p/ Oy

5 !;f ﬁf dwdv  Hwdu

drdy Oyox

Rearranging a bit:

] B f ]
—{f + £) “‘EUJ’ £) +vgy[f+ £) +w5{f+ £)

du B dwdv  Ow du 1 [BpBp Bpdp
-0+ (5 +55) ~ (5v0: 5y 0:) * |

In vector form we take

dzrdy Oyox

V »(momentum equation)
which gives

v
dz

The term on the left is the material tendency of absolute vorticity.

The first term on the right is the divergence (or vortex stratching) term.
The second term on the right is the tilting / twisting term,

The third term on the right is the baroclinic “solenoidal” term.

%U"‘ﬂ =—(f+&V.v- k.Vw,— + o Vp,Vp

Assoclated phenomena

Advection / conservation of absolute vorticity: Planetary waves, large scale ocean
circulation.

Divergence term: flow over mountains, ocean topography, tropical atmospheric circulation.
Tilting / twisting term: flow with large vertical motion, convective storms, fronts.

Solenoidal term: flow resulting from local differential heating, sea breeze circulations.

Recall barotropic flow

d
E[VsP] - D

leads to

D
S+ =—(f+EV.v

the “Barotropic vorticity equation”



Generation of vorticity by divergence

Let’s transform continuity equation from flux form to material tendency form

oh 0 0 oh oh  Oh ou  Ov
Dh D
So 5 = —hV.v  looks remarkably similar to E(f +&) =—(f+¢&V.v

Clearly the layer thickness tendency, through mass conservation, is generated by the divergent flow.
Similarly, the tendency of absolute vorticity is generated by the divergent flow. If we eliminate the divergence:

1 Dh 1 D D (f+€) _ D (1\, 1D
—Vwv=—-——= (f+¢) Dt( h )_(f+£)Dt(h)+th(f+£)
h Dt (f+€) Dt _(f+§)(Dh)+12(f+)_0
B h? Dt h Dt $) =
we get a new conservation law
D (f+¢§ —0 This is the “potential vorticity”
Dt h
In this form, potential vorticity is conserved on density layers.
00
More generally, PV is the ratio of the absolute vorticity to the stratification, (f + 5) — and it is conserved on
Isentropic surfaces (constant potential temperature). Op

It’s also a very compact convenient way to express the dynamics



Potential vorticity conservation

To conserve PV, changes in h are are compensated by changes in either f or . This is another way to
understand the link between divergent flow, mass conservation, vortex stretching and the generation of

rotational flow.

Example: Cold air mass

P o
stretching —+
ot f+¢

> CONVEIQENCE e

Example: Mountains, Taylor columns and Rossby waves

— divergence>—> % constant => flow does not cross h contours

t
% / N— D - ) f = f(y) => Rossby waves

ot




Conservation laws and potential quantities

The name “potential” vorticity gives a clue as to why it is conserved.

This is the relative vorticity the fluid parcel would have if stretched to
the mean layer thickness and brought to the equator.

As such, it is like an address label that we attach to a parcel of fluid.
The label refers to the state a parcel would have in reference conditions.

The vorticity of the fluid might change as it shifts latitude or stratification,
but this label is a constant reference.

The same principle applies to potential temperature: it's the temperature
a parcel would have if brought adiabatically to 1000mb.




= Steady departures from geostrophy: nonlinearity and drag.
Ageostrophy, divergence and potential vorticity.
= f-plane quasi-geostrophy in shallow water.
Quasi-geostrophy on a curved planet.

= Continuous stratification

Development and vertical motion.
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“Richardson’s dream”




Gradient wind balance

Recall x-momentum equation (for a single layer)

@-I-ua—u—l—va—u—fv——%
ot | ox oy ~ Yor

Now assume time independent uniform flow in a circle. The nonlinear (advection) terms express centrifugal
force - this is gradient wind balance (without the Coriolis force it is “cyclostrophic” balance).

2 v
(V) dh Co
V+ — =g— = Jv
/ - gd'r fug
v _ iy
so v(14+— )=y, Low: v positive
fr
| vg|
or || = . .
1 £ R, High: v negative \ v > v,
Ce
(“anomalous” cases have v and vy opposite sign, [v| >> |vg|) v i
solution for v so flow around a high limited by
fr f2r2 dh dh - f2r
v= 9 4 ng_ dr | — E (no such limitation for flow round a low)




Boundary friction

Adding surface stress can alter the balance in a linear framework, leading to convergence or divergence.

This is the reason air ascends in lows (cloudy weather) Ce
and descends in highs (clear sky).

It is also the basis of the way the ocean driven the wind
through Ekman pumping and Ekman suction.

Sub-geostrophic

ascent P

Co

Ekman pumping
But now we need to move away from these

anecdotal cases, and put together a system
with advection and time dependence that is
almost, but not quite, geostrophic.

We do this essentially by separating the flow into a geostrophically balanced, nondivergent part, and the
ageostrophic plus the divergent parts as a small perturbation. This small perturbation allows prognostic
equations that lead to the evolution of the flow.



Ageostrophic perturbation

Start with the shallow water momentum equations in a single layer

Du 8h _ 0
e D_2,.0.,0
Dv Oh Dt~ Ot 0x oy
+ fu+g— =0
Jy
. L . _ g oh g oh
What happens if we substitute in geostrophic velocity ?  u, = — 7@, vy = 7&

Redefine the material tendency to advect with the geostrophic wind

D Dy_08 9 98
> = — tUg— + Vg
Dt "Dt ot 7ox oy
What if we use the geostrophic value in the Coriolis term as well ? Dy, Oh — 0
Obviously this can’t work because it leads to zero tendency ! Eug —fugtyg or

Instead we make sure the equation is linear in the ageostrophic part Ugg = UV — Vg4

So the full flow is used in the linear Coriolis terms and we advect with the geostrophic flow.
This is consistent with the idea that the ageostrophic part of the flow is small.



Quasi-geostrophic f-plane vorticity equation

— -0 (
Dt ug = Ju+ g@.:c (1) 0 0 N |
D, oh 0 (9 Ep (2) — a_y (1) -> vorticity equation

3 P o Hug - Oou Ov dy”
8t§g+u98x£g+vgayﬁg+M+f(ax-I-ay) —I—vdy =0

If we are on an f-plane the last term disappears and the geostrophic flow is nondivergent

df
d_y :0, V.Vg =0

so we can write this as

D
D_i(f + ‘fg) =—fV.v



Continuity equation

What happens when we try this with the continuity equation ?

8h 0 0 Dh

57 83: —(uh) + y('vh) 0 = Dr +hV.v=0

Replace this D/Dt with the geostrophic operator Dy/Dt H h
oh

— — +v4e.VE+hAV.v=0 \ A

ot

But v depends on h. Terms involving vag were linear in the momentum equations so they must be linear here
too. For consistency we must therefore write:

h=H4+6h, O0h<H

oh
s a7 +vy.Vh+ HV.v =0 (this is equivalent to the approximation v,h ~ v ,0h + vH)

The ageostrophic term is now linear.
In order to keep the ageostrophic

term linear we had to make a

— Qah +vy.Voh+ HV.v=0 or &cm + HV.v =0 SENE ST IeN ElEELl dIs
ot J Dt stratification.




Quasi-geostrophic potential vorticity

We can rewrite the continuity equation as f Dg Sh=—fV.v

which as before has the same right hand side as the vorticity equation so we get
D, (,6R\ D, D, Sh
- v —_— _— R — —_— — pr— 0

This is the conservation law for quasi-geostrophic potential vorticity:

D, 5h
EQ—Oa Q—f‘|'fg—fﬁ

q is the linearised form of the full “Ertel” potential vorticity (but note that the units are different)

f+€ a (FHEN ([ _0oh _ _ (Oh L oh
T—(f+§)(H+5h)1~( 77 )(1 H)=>Q—f+§ fH §H

Geostrophic scaling

U oh
Ro < 1, f—L<<1:>f>>£, £ =&, =>Q—f+fg—fﬁ

This linearisation of layer thickness variations is a surprising consequence of our insistence that the flow be
close to geostrophic.

In a vertically continuous framework it means that the stratification is uniform in the horizontal



Adding curvature to the earth

That was all pretty straightforward because we assumed that f was constant.

But for many important dynamical phenomena the variation of f is important (Rossby
waves, for example).

On an f-plane the geostrophic flow is strictly nondivergent.

If f varies then we have to deal with the divergent part of the geostrophic flow as well as the
ageostrophic flow.

We will assume that both these components are small compared to the nondivergent part
of the geotrophic flow.

To proceed, we must derive the quasi-geostrophic set as an expansion of this perturbation
In a small parameter.

We naturally choose the Rossby number for this small parameter.



Derivation of the quasi-geostrophic set for a shallow water layer

Recall full momentum and continuity equations:

Z—I—I—vVv—l—fk/\v—l—th—O %-I—vVh—l—th—O

Introduce scaling for non-dimensionalisation:

¢ =xz/L, v =u/U t =t/T, n” =6h/Ah, (h= H + bh)
So the full equations become

2 A
Uov +U—V VvV 4+ Ufkpv’ —|—g—hV77 =0 (1)

T ot
Ahon U U

—A H + Ahn V.V = 2
T@t’ hv'. V?]—I—L( + Ahn ) V.v' =0 (2)
If the basic scalings conform to geostrophic balance (fo is the value of f at a reference latitude)

Ah U foL
fv~gVh = Ufo~g— — Ah= ’;0 (3)
1
Define the Rossby number and temporal Rossby number as € = v (4) and er = —— (5)
JoL JoT

Dropping primes, (1) / foU, (3), (4) and (5) -> GTZ—: + ev.Vv + ifc/\v +Vn=20




Quasi-geostrophic continuity equation

Lfg\ on , (Lfo
gH | Ot ‘ gH

Again dropping primes, LIUH x (2) -> €T ( ) (Vv.Vn+nV.v)4+V.v=0

The non-dimensional constant that appears in brackets in this equation is By, or L?/Lr?. Call it F.
Remember, when F~1, Coriolis and gravity / buoyancy effects are comparable.

So the non-dimensional continuity equation is

o
eTFa—’Z +€eF (v.Vn +1nV.v) + V.v =0

So far we haven’t made any approximations.

But we can already see from these two equations that to zero order in our Rossby number parameters, the
flow is geostrophic and nondivergent.

First order terms concern advection, divergence and time development.

Before doing a formal expansion in the Rossby number, we will set out our assumptions in detail.



The assumptions of quasi-geostrophic theory

1) small Rossby number, i.e. close to geostrophy € <1

2) small temporal Rossby number, i.e. timescales slow compared to local rotation rate. e <K 1
- no fast moving linear waves
- nonlinear (advection terms important for time development)

In fact we assume that €71 = €

3) buoyancy/gravity - stratification effects as important as Coriolis effects L ~ Lgr, F = O(l)

A consequence of (3) and (1) is that 6h << H

- linearisation of continuity equation and g.g.p.v. as we saw before.
In a continuously stratified case this is equivalent to saying that N2 is a function of z but not of x and y.

4) scales of motion small compared to the radius of the earth — <1
Te

In fact we assume that — = ¢
Te

Assumptions (3) and (4) have nothing to do with geostrophy !
They are necessary for our expansion to be self-consistent.



The beta effect

Is a consequence of assumption (4), that the scale of motion is small compared to the radius of the earth.

f =2Qsin¢

Taylor expansion about reference latitude ®o (where y’ = yl/re)

d d? 2 , 'L
f=fo+Boy+ ... :f0+d—£ y + dyJ; 3/2 +... =2Qsing + ——20cos ¢o + ...
0 0 e
Bo L | L U
set 5' = cot g = ~ 1 then provided — = ——
fOTe Te fOL
we can write, to firstorder ~— = 1+ ¢’y  (@Slong as we stay away from the

equator where cot ¢g — 00 )

fo

Henceforth drop primes on nondimensional y’ and B’

This is often referred to as the “beta-plane” approximation, because the function f describes a
plane in x-y space.

Not to be confused with the actual shape of the surface of the earth !

When we add the beta term, the surface of the earth ceases to be a plane and becomes a curve.
If we approximate the surface of the earth as a plane, then f is constant: the f-plane.



The expansion

Our equations are now ov - B
non-dimensional. “or +ev.Vv + (1 +efy)kav + V=0
uv,n B, F~1e<<1 577

Expand variables in increasing eF'— 4+ eF(v.Vn+nV.v)+V.v=0
powers of &. ot

— 2
V= Vo T EVL T €V . Substitute this into the equations and compare coefficients of €° (zero
n=mno+em + €Ny + ... order) and & (first order).

Zeroorder kavo+ V=0 (1) V.vg=0 (2)

Note that the curl of (1) gives (2). The two equations are equivalent. No development. Degenerate dynamics.
Geostrophic nondivergent flow can only change in time with the help of the first order (divergent) flow.

We can say no acts as a streamfunction for vo, i.e.

_90 0w

Note that since vo is hondivergent, it is not the total geostrophic flow, just its nondivergent part.
It represents the geostrophic flow on the f-plane at f= fo.



First order in &

Ovo 3 3 The second term in (2) Is zero because Vo is
ot +vo.Vvo + kavi + Bykavo + Vi =0 (1) perpendicular to Vno, and vo is nondivergent.
0 0
jalealll ’70 + F(vo. Vo +mVvo) + Vovi =0 (2) — FIR — vy,

The local tendency of zero order height comes from the divergence of the first order flow. Note that this
divergence comes from the ageostrophic flow and the divergent part of the geostrophic flow.

Take the curl of (1) to eliminate n1 and form the first order vorticity equation:

0
éo + &V.ovg +voe.VE+ Vv + ByV.vg + Bvg =0

The second and fifth terms are zero (nondivergent vo). Combining this with (2) gives:

0 8
;;LO +vo.Vé 4+ Pvg=—-V.vi=F (;10

then using %(,By) =0, vo.V(By) = pPvy, Vvo.Vny=0 we canwrite

0
%(5y+§0)+vo-v(5’y+§o):F[%‘I-Vo Vﬂo] or [8t+V0 ][53}+‘5O—F770]:0




Quasi-geostrophic potential vorticity again

Now, using
. ano . Ono w2
_ Yo 9 _ Y7o X _
— vo.V oz 0y Oy 0z vo.V(q) = J (M0, q)
and we can write our prognostic equation as
0  Onp & 9Ono O 2
T A _F —
ot " o oy oy oz | PV TV M0~ Fio]

g is now the non-dimensional g.g.p.v.

Re-dimonsionalise q:

or

|

Q-I-VO-V] 1By + &0 — Fmp) =0

dq

54'17(?70,(1):0

g = By + V?no — Fny

One equation, one variable.

Using previously defined scalings, working back to dimensional equations leads to

_ 2, Jo
q= PBy+ VY HcSh

and if we define the quasi-geostrophic streamfunction

g
v=5on

gH

_ 2, [ f&
we get q = Py + VY v or

and

1
q:5y+V2¢—L—2¢
R




Continuously stratified fluid

Up until now we have worked with discrete layers, each of which is homogeneous (constant density).

The extension to continuous stratification requires that we abandon this formulation and reintroduce a vertical
coordinate. The expansion around small Rossby number is very similar so it is shown in appendix slides. The
result is once again a conservation law for potential vorticity, which is defined entirely in terms of a
streamfunction, so one equation, one variable.

0
2d + J(1,q) =0 where now, y is defined as

Do
ot V=

ps fo

This is an anelastic fluid, which allows large variations of density with height, accounting for the static
compressibility of the atmosphere. In this case the g.g.p.v. is

= By + V% + . -
q = By (2 ps 0z p = pS(Z) + p(a:,y,z,t)

szsaz

Only the vortex stretching component has changed.

In a Boussinesq fluid, where ps is a constant (independent of z), this simplifies to

0 (f(? 81/)) p = ps + B(z,y,2,t)
0z \N? 0z p=ps+p,y,2,t)

q =By + VY +



V) EXTENSION TO A CONTINUOUSLY STRATIFIED FLUID
(with non-Boussinesg, static compressibility effects)

Three dimensional scalings for a compressible, baroclinic stratified fluid:
'H L
ry— L uwv—=U z—H w— A t— i
p = ps(2) + plz, ¥y, 2, L)
p= pal2) + plz.y, 2, 1)
Geostrophic scaling for pressure

1 dp
flmﬁﬁ

S0
f— follLps

Hydrostatic scaling for density

dp N
Bz )
50
Up,L
—a fﬂHJ; = s-EF
50

p=ps(l+eFp')

rec:all
p_ R0
gH
Lr
F o m—
foL
also
.;r r I
— =1+
fo :



BoL?

g =

U = cot ¢@g

as before.

Non-dimensional momentum equation:

SL’U_2 _l_v’ erU_2 _l_wr@HU?
ot L ’ L 0z LH

1 A4
ps(L+eFp') L

+ fUl;;\Vr =

= ~UfoVp' (1 - eFp)
(to first order)
Divide by Ufs, drop primes
ov 0 -
G + ev.Vv + ema—: + (1 + efBy)kav = —(1 —eFp)Vp

Non-dimensional continuity equation (non-Boussinesq)

dp dp ow
B +v.Vp+waz Jr,oV’.er,oaz =0
Uap U ,o, UH ,0p

psfFf@ + pSEFEV V,O —i—pseFﬁw @

UH ,[0ps / E , , ouw' _
tw [az}Jr,os(lJrer) 7\ Vv + B =0
X L —

psU

a_f)’ ! ! !a_.p! I iaps f ! 61”’
EFat' +eFV' .Vp' + eFuw 92 + Hw [,03 6z] +(1+€Fp) (V.v + 5

Note that the expression in square brackets resembles A?, and note that zis
dimensionless.

ULfl]ps

2 900
N 8, 0z
Define

2_ 99ps
S s 02

then the fourth term above becomes
(%)
w
g

This is the non-Boussinesq term.

So dropping primes

eF (% +v.Vp+ w%) + H§2w + (1 + €Fp) (V.v 3=
Expansion of non-dimensional variables
V=vVytevy+..
w = wqg + ewy + ...
p=po+ep1+..
p=potepr+ ...

Momentum equation to zero order
Geostrophic balance

lAc,\vu = —Vpo
and

V.VO =0

Continuity equation to zero order

H 2
S’wn—i-v.Vu—i-%:O
0z

Therefore we can't generate wy in the body of the fluid by horizontal motion. At zero order,

vertical motion can only be generated at the boundary.

Assume that the bottom vertical velocity

ow

Oz

)

0



wyp = 0+ ewyy + ...

(this is assumption (3): weak orography)
Integrate upwards, this implies

Wp = U
everywhere, so

w = ewq + ...

Momentum equation to first order

ov o R
B—to +vo.Vvo + kavy + Bykave + Vpr — FpoVpy =0

vorticity equation:

0 dpg O 13)
% +&V.vo +vo.VE + V.ovy + ByV.vo + v — F [%% — %% =0

Second and fifth terms disappear by nondivergence of the zero order flow, and the last
term can be rewritten using geostrophy of the zero order flow to give

P
g + v0.VEo + V.v1 + fvo + Fvo.Vpo = 0

Continuity equation to first order

ot

Faﬂ—l-FVo.vpo—i- ( 52

2
Hj )wl—i—Vvl—l—%:G

Note that the second and fourth terms have just appeard in the vorticity equation. So we
can eliminate them by combining the continuity and vorticity equations:

aa% + VQ.VEU + ﬁVu = —FVQ.V,OQ — V.Vl
_pop  (HS duwr
=F ot + ( g )wl + 0z

At this stage we note that for synoptic scales F~ 0.1 so we neglect the first term on the
right hand side. This is because we have set

g _p
~ gH R?

(remember, for the atmosphere:

VgH /10 x 10*

L? 10002 2
= — o ——— ]_ -
R2 30002 0

So the vorticity equation is now

8 H32 awl
a(ﬁy‘l‘fu)‘i‘vu-v(ﬁy‘i‘&) = wy + B2
Using
52— 9.9ps
Ps 0z,
the right hand side can be written
190
- Ps az (pswl)
We can evaluate the right hand side using the ...
Thermodynamic equation
De
Dt 0
scale
0=0,1+¢€F(0+..))
as we did for density, so
U oy U a9’ HU
E @6}395 + EVI.VQIGFQS + w"@eFﬁs ﬁ —+ w

drop primes, get

2
eF (@+V.Vl9+w@) —I—wN a =10
ot 0z g

At zero order we recover

‘I.Uo:(]

3 x 10° m = 3000 km

o0, UH _

Oz,

L

0



At first order:

6, N2H
F(a—0+Vg.Vl90) + un p =0

ot

—)‘wlz

212 (86,
at

_W ——qF VO.VQO)

introduce

un =

f2L% [Dyby
N2H? | Dt

Multiply by ps, take vertical derivative and then divide by ps, and exchange derivatives
when possible. This gives

1 3 DO f02L2 3 psﬁo
_3_(psw1):__ 2, 92 2
ps 0z Dt |H2%p; 0z \ N

and we can use this to rewrite the vorticity equation as

Dy RBL? 0 (pibo\] _
Dt |V ot e, 9, (w2 )| =0

Now we have one last thing to do...

Hydrostatic equation
op
52 =—Pg

P = Pps +pops foUL
p = ps+ popseF

d
— a—z(pops) = —pops

or
10
Po —p—sa—z@uﬂs)
Now, define

0, = 0,(2)(1+ eF8)

and define

1 (psgH
0y = —pg+ — ( )
0 Po ~ D, Po

ASIDE: So where does this come from ?
Its needed fo ensure

dd 1dp dp
6y s
(where
)
PROOF:

integrate this, gives

log 0, = B log p. — log p. + const
v

but

0, = 0,(1 + eFo,)
ps = ps(1 + €Fpo)

Ps = Ps + ps foULpo = ps (1 + quL;%pu)

Hps
= g (l—l—eF(g P

Ps

The inner term in brackets is the reference hydrostatic scaling, ~ 1.
Substitute these expressions for 3*, p* and p* into the log expression using the fact that to

first order

log(1 + ex) = ex

— eFfy = lEF (ngs) po — €Fpg
Y Ds

1 (gHp,
HQOZ;(M)I?O—,OU

END OF ASIDE



Substitute this into the hydrostatic relation to elimintate density

1 (psgH 9ps
pn=—9a+§(pg )pnz po _ po9p

dz  ps Oz

8

bo = % + Po iaps ol L(p9H
0z ps 0z v\ Ds

From the reference hydrostatic relation, the second term in square brackets can be written

_ 1 9ps
v 0z

but this is just

oo (100,
7 5z Po 6s 0z

and the term in brackets

N?H ¢
=] ~ e

9 g

so we can write the perturbation hydrostatic relation in terms of perturbation potential
temperature:

_ Opo

% =%z

... put this back into the vorticity equation:

Do 0L* 0 ( ps Opo\] _
Dt [ﬁy+£°+H2psaz N2 9z =0

This is the non-d quasi-geostrophic potential vorticity.

Redimensionalise:

_ fod (ps 9 (po
i=mra+ 2o (g (2))

introduce a dimensional geostrophic streamfunction

— Po_
w_Pst

get

detalls

q=ﬁy+V2w+l£(

ps 0z

fe oy
N2P* 5,

This is the full quasi-geostrophic potential vorticity for a compressible stratified fluid.

Note: for stratified Boussinesq fluids this form reduces to

_ 2y O (fo O
9=Py+V w—l_az (N2 az)

(this is OK for the ocean).

g is conserved following the flow:

dq

Everything is represented in terms of one prognostic equation in one variable (the
streamfunction).



One variable to rule them all

Since y is the only variable in the system, it must be possible to express anything in term of w, and is !

oy o _ |0 oY
YTy YT e VTN [aﬁ“'v} 92
r f__pOfoa/l/)
p = pofoy, p' = g 0z

Knowledge of q plus boundary conditions leads to knowledge of y, and hence the advecting flow.

dq

Prediction becomes a sequence of operations: 2 4+ v.Vqg=0
ot ’
1) diagnose ¢
2) integrate the prognostic equation forward in time to find the next values of g
3) apply boundary conditions and invert the elliptic operator to find y q= Py + qup e fn(qu)
4) rinse and repeat




Development

We approximate the quasi-geostrophic potential vorticity equation as

0 f2 )

rearrange the derivatives on the variable y:

2 52\ 9 2 9
(VZJ“JJ\; 8z2) af = vV (V%”)‘%i (V V_w)

Now assume  is a wavelike disturbance with a sign % X sinlx sinmy cosmz /H
change in the vertical (first baroclinic mode)

f2 (92 f27l'2
— (V2+ N2g2) =~ > +m? + NZ[2

S0
oY 2 20 0y
Fn x +v.V(V 1/)—I—f)—I—N28z (vVaz)

The terms on the right hand side generate the tendency in w. So a local rate of change of w, or equivalently a
change of pressure or geopotential, is proportional to...



Advection of absolute vorticity

%—Qf x v.V (V% + f)

We see from the picture that zonal advection of relative
vorticity sends troughs and ridges east. Meridional
advection of planetary vorticity sends troughs and ridges
west. Which process wins ?

V2 = —(I* + m?)y

Long waves go west, f dominates (Rossby waves).
Short waves go east, ¢ dominates

For short waves +v.V§ positive = — positive

ot

So a ridge in region | propagates east. But the tendency is
zero at the axes of the ridges and troughs, so no
amplification.



Vertical gradient of temperature advection

0 9 (w2 _ 9o
ot 92 (V'v az) * 5z V-V0) [90_ az] o

250

This is sometimes called the “differential thickness advection” |
500
(ever noticed how synopticians love talking in multiple

derivatives ?)
750

If we have warm advection at low levels then this term is
positive and a ridge is created. 1000

If we have cold advection at low levels this term is negative
and a trough is created.

Eastward flow v



Vertical velocity

The quasi-geostrophic system allows us to do a more accurate diagnosis 8_'w — a_u 4+ @
than we can do with 3-d nondivergence which suffers from large cancellation. 0z Oox Oy

The first order Boussinesq thermodynamic equation yields

_ gapo 8p0
w=—b. (at 0z Ovaz)

Compare the Laplacian of this equation with the vertical derivative of the vorticity equation

v? (Qap") = -V~ (vo.v%) — B V2w,

0z Ot 0z (using &y = V2po)
I, 0w oo 00p) _ Owi O

equate right hand sides

2
( V2 4 ;z2) wy = g(vo V(f+&)) — V2 (vo v%p")

Note that this time we have eliminated the tendency term (rather than the vertical velocity term) between the
vorticity and thermodynamic equations and obtained a diagnostic equation for w (rather than a prognostic
equation for ). It’s an elliptic equation for vertical velocity in terms of the geostrophic streamfunction. /t’s
often called the Omega Equation (usually derived in pressure coordinates).



Recap

2 a2 2
(s PP\ ) o g%
Tendency equation: (V + N2 8z2) 5t v.V (V Y+ f) N2 52 az

Geopotential (fall/rise) proportional to:

A) (+/-) vorticity advection
B) rate of decrease with height of (cold/warm) advection.

2
Omega equation: ( 1V2 (;)Zz) Wy = —(VO V(f + 50)) . vz (VO V%po)

(rising/sinking) motion proportional to:

A) rate of increase with height of (+/-) vorticity advection
B) (warm/cold) advection



= Parcel displacements and the conservation of potential vorticity
= The Rossby wave dispersion relation

= Topographic RW, baroclinic RW and vertical modes

= Parcel displacements in shear flow

ei(lx+my—wt)

= Barotropic instability and the necessary conditions for growth

= Scales and structures for baroclinic growth and the Eady problem
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-+ the phase speed (c) is the arrow that points from the
ei(kx—a)t) origin toward the curve (the ratio f}

-+ the group speed [cg} is the tangent to the curve {Z—c;

w

Deep water waves

Long waves



Parcel displacements In a vorticity gradient

= Consider a parcel of fluid that conserves its absolute vorticity in a westerly current

/ Rossby

wave




The conservation of vorticity

= Let’s look at various forms of the vorticity equation in a westerly flow % =
where D/Dt is given by 2 = g (U + u')— + v = (prime denotes small perturbation)
Dt 0Ot ox 0y

... and g can take various forms :
3) Two active quasi-geostrophic layers

with a flat bottom and a rigid lid
1) Nondivergent barotropic

0 f% oy
_ 2
q_6y+vw+6zN282
q=By+ Vi
/ IH12
N=9% ,=-VYIL
H f
awzo
0z
2 —2
2) Single layer of variable thickness H; g1 = By + V1 — Ly (41 — ¢2)
.,-4.------}...(---7
_ 2. 1—2
4=Py+ VY= LpTy Hr gy =By + Vs + Ly° (1 — o)

— 0
N - 815:0



1) Nondivergent barotropic case

In the first case we write down the vorticity equation & =0 as: )
u=U+u’ Dt v=v’ q=PBy+ VY

0 0 oY 0

9 (By+v2y) + (U -2~ (ﬁy+V2¢)+ w (ﬁy+V2¢)—0

ot Oy D 9 0,0
E_§+(U+u)8_+v@

0 o2 Oy 2 0 00 o,

8tvw+(U 5y ) Vi + B s T oo LY =0

The linear equation in perturbations y is

0 oo 0 oo z/)
8tv Y+ Ua Ve + ,8

> &

Look for zonal wave solutions of the form 1) = Re @e’i(l”rmy—wt)

Substitution into the derivatives gives algebraic expressions

0 . 0 .
— = —iw ——i Vo —(*+m?
ot x N
= Leads to the dispersion relation: W = Ul
12 + m?
- | is the zonal wave number (27t divided by the x-wavelength) m # 0
- m is the meridional wave number (27 divided by the y-wavelength) [ <

- ® is the angular frequency (21 divided by the period) (U =0)



G G q/) o 8

4 2 2 2
&V%J“Ua VZQ/)_|_,8 5 W E—Vzl Ve — —(*+m*)
_ (g
iw(l® +m?) —dl(I* + m*)U +ilB =0 w=1U— (12 + m2)
w(l® +m?) =1(I* + m?)U - 18
W g
% 5 TR (s
OW _or 29 7012 4 2\-1
_ 2]) — — _
(lz_|_m2)+l( (% +m?) =" x 21) (12 + m2)2 (12 + m2)2
Ow [ — m?
ol U"’ﬂ(lz_l_mz)z



Rossby wave dispersion

Dispersion relation

w=Ul— il

l2_|_m2

The phase speed and group speed in the x direction are given by

w 8 Cow . AE—md)
=T Vi =~ VT Ermp

The phase speed is westwards relative to the mean flow.

The group speed depends on the zonal and meridional scale of the wave.
—C T OO

Longer waves (smaller k?) travel faster.

> &

Waves closer to the equator (bigger B) travel faster.




Rossby wave propagation mechanism

Can be understood in terms of the conservation of potential vorticity. When a parcel of fluid
changes latitude, to compensate for its changing planetary vorticity, it must acquire either
positive or negative relative vorticity. This induces a circulation that leads to the westward
propagation of the disturbance.
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2) Divergent case (variable layer thickness)

If we allow some vortex stretching in the conservation law, there is some modification

of the Rossby wave characteristics. We linearize

'’ In the PV conservation equation, the stream function is the summed-up contribution of:
lthe stream function associated with the perturbation ¢
the background flow stream function yz=-Uy

0 0
(8t (U—I—u’)— +v %) (By + V¢ — L% (¢ — Uy)) =

5 0 . O
o (5 + Uz ) (V0= L) + B+ L20) 50 =0

material tendency of perturbation advection of
perturbation relative vorticity planetary vorticity and basic
and vortex stretching term state stretching term

[ <

q=Py+ V- L%
\ /

W
A

L3220
_ = The dispersion relation is now w = Ul — [ B+ R

)
12+m?+ Ly

(U=0)

The current no longer just provides a simple doppler shift, but actively changes the basic state PV gradient,

altering the propagation speed of the waves.

Note also that the denominator does not go to zero, so the phase speed is bounded and long waves are

much less dispersive, with group speed to the west, even when m=0.



Topographic Rossby waves

Vortex stretching can be important for Rossby waves in situations
where there is a sloping bottom (hy- = ay). It is analogous to the
effect of changing the Coriolis parameter with latitude.

Both are geometric effects giving rise to a “restoring force”, owing
to the generation of relative vorticity.

q=fo+,8y+£—%(ay+n)

In the northern hemisphere,
an ocean floor that is

shallowing to the north will
have the same effect as beta.

In the southern hemisphere -
the ocean floor must shallow
to the south.




3) Two active layers

Two active quasi-geostrophic layers with a flat bottom and a rigid lid. Ignore advecting current for simplicity.

=* In this framework, we have two
active layers in which the guasi-geostrophic

q1 = ﬁﬂ + vzﬂl?l - L;E{ﬂu - %) potential wvorticity is conserved (cf.

Hy #GFD2.3h):
I +
m=fhf‘ﬁf+fl—ﬁilah
2 ~2 Lo v+ L
H g = By + Viba + Ly " (Y1 — ) =, > H,

f = We retrieve geostrophic stream
functions for each layer (cf. #GFD1.4e):

1 1
fn X, u) = _P_?PJ_ = —g?{:hl + hz} and fﬂ x U-> = _P_FPE = _E?{:hl + hz} — g'?hz
0 0

W, = %{hl +hy) and Y, Z%{h‘ +ha) + 2 h;

< The interface displacements (from the rigid lid) are §h = —h, = %{:ﬂ,’l — 105 ). Therefore,

the vortex stretching term is a coupled term defined in terms of the difference between both stream

g

functinn5.|
0 . : 0
5 V241 — L7 (1 — 92)] + 5% =0
2 [V + Ly — )] + B2 =0




3) Two active layers

Two active quasi-geostrophic layers with a flat bottom and a rigid lid. Ignore advecting current for simplicity.

gy vips OO —
1= P 0z N2 0z o @ =By+ Vi — L7 (Y1 — )
0 31/11
3 (V21 — L% (1 — h2)] + /3 =
2 -2
0 0 Hy g = By+ Vs + Ly " (¢1 — 1)
57 (V2o + Ly (1 — b2)] + ,8 1/)2 = |
We can uncouple these equations by subtraction and addition to find the J JIH,
‘normal modes”. We can then find independent solutions for the two modes. (N ? = T L2 = 7 : )
— Ly + Li%Ye  Hitpy + Hotpo ~ L:2=1724 ;2
w_ L—2_|_L—2 - H_I_H ¢=¢1_¢2
Barotropic Mode Baroclinic Mode (LR = ? , H= HHIJFH;{ ) w
The equations become SN
0 oo 1/) _ pl
o’ VP YT T m?
G, ST Y, _ bl
[(vz ZW]J“’B%_O T TR m2 1Ly l
<




Extension to the vertical continuum

Consider quasi-geostrophic fluid bounded at top and bottom by rigid flat surfa
For simplicity we assume constant basic state stratification.

0 oo 2\ 0%y oY _ 0 _
P [V P+ ( ) + ,8% = 0 with boundary condition 5, ) — 0

N2 ) 022

seek wave solutions 1 = Re @(z)ei(l“my_wt)

z=0
with separable vertical dependence f* dzd; = —1"1/;
N2 ) dz?
In general, leads to dispersion relation n=0
,Bl n=1
W = — —
2 n=2
k= + 1 n=3
In this simple case the eigensolutions are cosines

Un(z) = cos(nwz/H), n=1,2..., ky,=nn/H
o Bl L _NH_ N _c
k? + (f?/N?)k3

nf  fk, f




Vertically propagating Rossby waves

Consider the vertical wavenumber for each mode Remember cx is the gravity wave

speed associated with the vertical

kyn = ’n,ﬂ‘/H — N/Cn mode, not the phase speed of the
Rossby wave !

Dispersion relation for long Rossby waves

pl BIN? Blc?

wWw = — ~ — =

(PR PR P

We can trace the signal path associated with vertical
propagation in the x-z plane by calculating the ratio of )
400§ W‘
2

Interannual RMS

components of the group velocity

Depth (m)

Ow BN?  Bc,
A= R

Ow  2BIN*  2lc}
ok, ~ P8 PN

800

Propagation 1000 0
S dz Cg 2lc, 2f2w pathway for 140°E
O —=—==— = isotherm depth
dr  c% N BNc, variability from
[ R e
ARGO data
0 5 10 15 20
m

(Vergara 2017)



Observations

Evidence of Rossby wave propagation in satellite altimetry of the sea surface ?

Jul 95,

Jan 95 t‘k ¥

Jul 94 ' =

Jan 94 ' :

Jul 93 '.1
vy

0.2 0.15 0.1 0.05 0 005 0.1 0.15 0.2



Growing Rossby waves ?

Let’s revisit the mechanism for Rossby waves, but this time with horizontal shear

I £ <0/ N\

f £=0 (imaginary exponential)
fr &\
I+ No curvature /
Induced
—

i,
-————————— Shear background flow U

> 0
f= : UNSTABLE (real exponential)




Perturbations on a shear flow

= Barotropic nondivergent flow: uniform in the vertical 7z=10
8u_|_u8u . vau fo = 1 Op u
ot dx = Oy - pOz N
ov ov ov 1 Op ou Ov
- u - v F fu=——— | =0
ot ox Oy p Oy or Oy
| | | _ 1 dp
choose a background flow that is a solution of the equations: U = u(y) = — —
pfdy
add perturbations: u = —a—?’b, v = 5_?,D y=1L
oy ox

= Leads to the perturbation barotropic vorticity equation:

o 0 ) d*u\ oY
(W“%)W*(ﬁ‘dyﬂax—“

N\v_‘ V

advection of perturbation advection of basic state absolute
vorticity by basic state winds vorticity by perturbation winds



Uy + uu, + v'u, — fo'
v, + wvy, + v'u, + fu'
~Pyyt — Wzyy

@
ot

V) —u

0

ox

_wyt — ﬂ"/)xy + ﬂy"/)x — f’l/)a: —

_1/)3375 — ﬂ"/)xa:

V2 + (Tyy — B) e =0

_f"/)y:



Stationary Rossby waves

) d*u\ oy
)V ¢+(ﬂ_dy2) or

As before, we can derive a dispersion relation for Barotropic
Rossby waves, this time on a shear flow, by introducing
solutions of the form 1) = Re te’{lz+my—wi)

,6 _ Uyy)z 0 z?
[2 +m? o [

w=UZ—(

Consider stationary waves: w = 0

= U(* +m?*) = (6 — Uyy)

And the stationary wavenumber kg = \/(ﬁ -U,,)/U

. . 0 0 20 30 0 60
For stationary Rossby waves to exist, (3 — U,,,,) must oo
] ) vy (c)Meridional vorticity gradient: JFM 2014
have the same sign as U (which usually means both must o [ s P S AT
be positive). o (R ARG S

Ve SN ~

Ray paths can be calculated as before from the ratio of €0
components of the group velocity 205

B.(12 —m?) 28.m
"QZ(U e T e

(Be=B—Uyy, k*=1"+m?)

£

BOW 0

(Coelho et al 2016)



Growing solutions

(2 +a£) Vi + (ﬁ — d2ﬁ) W _ g
oz

dy?
Now let’s seek solutions in form of zonal wave with coefficients that depend on 'y
_ 1(lx—wt

Substitute in, get

42

the “Rayleigh equation” (where ¢ = w /). If we add channel boundary conditions

® =0aty =0, L, in general we get a set of solutions for @ associated with complex conjugate pairs of values
for ¢ (or w). The imaginary part of the solution is associated with growth or decay. The growth rate is the
imaginary part of w.

c=c¢,+1ic, ¢ =cp—1ic;

W= wr+iw;, W= w,— iw;

(note that the wavenumber | is real)



o 8 2u\ 0 B (ot
(5+up ) v (555 =0 w=sets
v2¢ _w _I_w _ 2 (¢Zl €<>) + 2 (¢ €<>) _ (—¢l2 _|_¢ )€<>

— Yzxx yy_ax 82} Y o vy

Yy = @il e~

—ilo(—¢ 12 + Byy) HAT(=) 1 + fyy) + (B — Ty )il = 0
7 By = 1) + Wby — S17) + (B~ Wyy)6 = 0
— (5 =) (byy — $12) + (B =Ty )¢ = 0

(@ — &) (byy — $12) + (B — Ty )$ = O

Uu—=°C

byy — "¢ + (ﬁ__ﬂyy)qs:o



Conditions for growth: the Rayleigh criterion

d? — d?u/dy?
dy? u(y) —c
Multiply the Rayleigh equation by @* and integrate across the domain:  (integrate by parts and apply boundary
conditions)
L 2 L 2— 2
d(b 21 112 /8 —d U’/dy 2
- [ 5] +er ) dy+ CUY) y12qy — 0
0 dy 0 u—c

The term on the left is real. If ¢ is complex, and we multiply top and bottom by (ﬂ — c)*
we can isolate the imaginary part:

L 2— 2
d“u\ |9
ci _ 22— du = 0
/0 ( dy2) u — c|? Y

If ci # 0 then we have growth. So a necessary condition for growth is that the integral is zero.
This means that ,8 — Uyy Must change sign betweeny =0andy = L.

To put it another way, the gradient of absolute vorticity of the background flow:

d fz y=L
. a7 na Yy m
d (fO + ’8 Y uy) " the donj;gin bu:; change Sign so
4 ~If the Rayle‘?/een (Oang ) Tewhere \
y
; ]

e Might K 8h Crite,:
: . . av ) Iteriop ; :
must Change sSign in the domain. €an ’”Stability. h s Sat’Sfied,

So we require an extremum in absolute vorticity.

y=0



derivation: integrating by parts

d
L L I
[ =0ty = [0~y dy= [ ds,) - [ @)y [ 2 dy

I L
— [¢¢y]o —/O |¢y|2 + 12¢% dy



More conditions for growth: the Fjgrtoft criterion

The real part of the integral must also be zero. By the same manipulation as before this gives

: b du\ ¢
2 2 _
e ) o[ e (0-35) g =0

Fjartoft Logic
as we already know [A=0

L 22T Pk [A(u—¢c)>0
— =2 A=0 Alu—ug) = | A(u —c A(c — u 0
/0 ('8 dyz) @ — cf? ! fAEu_u§§>g e+ J Az w)>

we can deduce that (ﬂ — ’u,g)(,@ —U y) must be positive somewhere in the domain
for any uo including the value for the background flow at the extremum.

The expression is obviously zero at the extremum but must be positive .

somewhere in the domain. The choice of the value of uo at the latitude = Ho, (& — uy)(p — Ty} MUst b e

of the vorticity extremum makes this criterion as stringent as possible. OmG‘ﬁhere in the domai: " Positive
: the Figrtoft critar:

Note: a the non-satisfaction of a necessary condition for instability Might have ap instabil

can also be seen as a sufficient condition for stability

riterion is capics:
' Satisfie
,ty' dl we



Conditions for growth

§ — iy, must change Sigf somEWRELE Yo, (@~ ) (p )
0 and L). SOmewh Uyy ) must
in the domair betWeEn &lterlon is satisfied, OOUf ;re [ the € domain e Positive
. If the Rayleigh C € Figrtoft critey,

tability. Mmight have 5

ni -
we might have an Ins n Instab:ht 'S satisfied, e

- g
y
y=0 ‘
4 % Both and criteria are just necessary conditions. They are not sufficient

conditions. This means that, when analyzing a potential vorticity map, if one of these conditions is
satisfied, it does not mean that the flow is unstable, it means that it is possible for the flow to be

unstable.
On the other hand, the non-satisfaction of a necessary condition is a sufficient condition,
which means that if the or the condition is not satisfied then the flow is stable.

- J




Poiseuille Flow
(u=1-y?

Gaussian jet

sinusoidal

polynomial
(boundary
extrema)

3

- i

3

-k

S|

y of

d*u stable (Rayleigh) -
dy2 no change of sign

possibly unstable —
dy? change of sign

2_
d"u possibly unstable —
dy? change of sign

d%u stable (Fjartoft) —
5] vorticity extrema at the
boundaries

boundary extrema but u always has opposite sign to
vorticity gradient (f plane example, beta might change
this) so product always negative.

- Remember: Fjortoft criterion must work for any uo



Physical mechanism

Take the example of an isolated shear layer. It has negative (clockwise) vorticity and is embedded
In a flow that has no vorticity. So It represents an extremum.

A
>

The perturbation meridional flow
can export this vorticity into a
region where there is none. At the
same time, on the other side of
the vorticity strip, but just out of
phase, the same thing happens.
The induced flow deforms the
vorticity strip so that the situation
amplifies and the deformation
continues.




Baroclinic instabllity

] Light
Now we turn to a mechanism that S
can liberate stored potential )
energy in a system that may be G . S
barotropically (and statically) : :
stable. Ultimately, work is done by S o
gravity to provide growing kinetic 4 o ®
energy. The perturbation must o
have the right structure to make Heavy
the necessary rearrangements to Light
tap this source of energy. JR— e
S o "° -
g e |®
o4
@<¢———-—"""" ®




Sloping convection

Low density

High temperature C Increasjng Density
Q
A i B
Decreasing Y S .- ®
Density : A
O
A

High density
Low temperature

In a rotating system we can imagine a steady basic state with inclined
density contours (we need rotation to balance the pressure gradient
forces). It can be statically stable. But a sloping parcel displacement can
still leave a parcel in a situation where it is more buoyant. The
displacement A-C is stable. But the exchange of the two parcels A and B

will release energy stored in the density structure.



Optimal scales for growth

The mechanism relies on horizontal variations of density, and on a perturbation that has the right phase
arrangement to amplify by vortex stretching. Consider the following scaling for the quasigeostrophic potential
vorticity (on an f plane):

0z \N? 0z
v
If distance scales as L, then V1) ~ —
L2
o | F20 T
and if height scales as H then the vortex stretching term scales as ~ = —
N?H? Lp

If L >> Lr then the relative vorticity is unable to balance stetching, so stretching is inhibited and we have
vertically uniform disturbances - this is the barotropic limit.

If L<< Lr then relative vorticity dominates, and the layers become uncoupled, and thus unable to cooperate to
produce the necessary structures to liberate the potential energy stored in the horizontal variations of
stratification, or the vertical shear of the wind.

The optimal scale is thus the Rossby (internal) radius of deformation Lr = NH/f
Growing disturbances of this scale will be selected



Physical mechanism

Consider a two-layered shear flow in thermal wind
balance.

Introduce a positive PV anomaly in the upper layer,
with associated cyclonic flow.

Positive relative vorticity is associated with positive
layer thickness, squeezing the layer below.

Induced advection in the lower layer
creates a dipole of PV anomalies with
associated circulation patterns

This induces southward advection of
more positive PV in the layer above,
amplifying the original perturbation.

Note the westward tilt with height of the
PV perturbations.

At the same time, due to the upper level
PV gradient and the gradient of f, the
entire structure propagates westwards
as a Rossby wave.




Modal solutions

The linear perturbation potential vorticity equation is
8_(], + 8_(]' + fu’a_Q _
ot Ox oy

and as usual we seek wavelike solutions in x

P = (y, z)et Tt

0

substitution leads to the equation

- 0 fo© = o~ 7

with boundary conditions at the top and bottom (z = 0, H)

“These are analogous to the Rayleigh equation for barotropic (shear) instability.



Conditions for growth

We go through the same procedure as before with these equations: multiply by the complex conjugate and
integrate over the domain. The “domain” is now in y and z.

This eventually leads to

L H _ _ L H Q 3
[ [ 1w+ N+ 2igdzay - | Pz +
0 0 0 0 U—-c

f2/N2U, |92
U—c

dy =0

the imaginary part of which is

L H Q -
—C; Y w dz +
L] et

If ci # O then the integral must be zero. This means that at least one of the following conditions must be met
(the “Charney - Stern - Pedlosky criteria”)

~ H
fo/N?U. |9
U —cf?

dy =0

0

- Qy changes sign in the domain (there is a PV extremum)
- Qy has the opposite signto Uz atz=H

- Qy has the same signas Uz atz=0

-if Qy =0, Uz has the same signatz=0and z = H

Note these are just necessary conditions for the integral to vanish.
Note that U; is directly related to the basic state meridional temperature or density gradient.

- Waves can grow in the interior of the fluid (on PV extrema) or as boundary phenomena (on boundary
temperature gradients).



The Eady problem

Simplest archetype of baroclinic
- f plane
- N2 constant

- constant vertical shear U(z) = U z/H
- motion is between two rigid flat surfaces

atz=0,H

Instability

Height

- Uniform vertical shear means the basic state PV = 0.
- The procedure for solving the problem is the same
as before - substitute wave functions into the PV

equation to produce a Rayleigh-type equation, and
apply the boundary conditions w =0 at z = 0, H.

H eight

- Instability arises from boundary temperature

gradients.

Non-dimesionalized gtl'owth rate
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Max. growth rate
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What we learn from the Eady problem

- length scale of maximum instability characterised by the deformation scale (factor of about four times)
- the most unstable growth rate is 0.3 U/Lr = 0.3 fo/N du/dz
- there is a short wave cutoff - short waves are not unstable

- the circulation (meridional current, streamfunction) must slope westwards with height in westerly shear to
extract energy from the basic state.

Some results of the Eady calculation applied in an oceanic context:
H~1km,U~0.1m/s,N~10?s? leadsto
deformation radius Lr = NH/f = 102 x 1000 / 104 = 100 km

scale of maximum instability = 3.9 Lr ~ 400 km
growth rate = 0.3 U/Lr ~ 0.3 x 0.1/ 10° ~ 0.026 days™ (period ~ 40 days)

Compare with the atmosphere
H~10km,U~10m/s,N~10?s' leads to
Lr ~ 1000 km, instability scale ~ 4000 km, growth rate ~ 0.26 days™ (period 4 days)

In the Eady problem is theoretical, the instability relies on an interaction between waves at
the upper and lower boundaries. If either boundary is removed, the instability dies.



Heat transport in a baroclinic system

Growing structures tilt westwards with height.
Consistent with thermal wind balance this structure also transports heat polewards.




Baroclinic instability: summary

- There is clear evidence of a preferred scale for turbulent motions in the ocean

- Simple scaling arguments and more sophisticated stability analyses show that there is a
preferred scale on which growth can occur.

- If this growth depends on extracting energy from sloping density surfaces (or equivalently,
vertical wind shear, or horizontal temperature gradients), then there must be an interplay
between vortex stretching and relative vorticity terms in the conservation of PV.

- This naturally selects structures around the Rossby deformation scale.

- These structures can grow exponentially provided certain criteria are met: notably if
extrema exist in the potential vorticity of the basic state.



Chapter 4: Gravity waves and tropical dynamics

= Gravity waves and rotation

= Coastal Kelvin waves N

= Scales and approximations near the equator
= Equatorial Kelvin waves

= Equatorial wave solutions: dispersion and structure
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Gravity waves In shallow water

Let’s start with something simple: a one-dimensional non-rotating linear system.
Which terms shall we cross out ?

Ou _|_22/_|_ S _/_ _ %
at By — g(‘)a’: X-momentum
Ov Ov oy, . o7
ot +%+ Y Y T/V/: _ga_y y-momentum

8h 8 y Ii_{ ou Ov
875 + 8; - % T ay_ continuity (h = H + n)

This leaves us with

du  dh dh du d?u d?u
it~ Ydx  dt dz a2

and the solution of this equationis u = Reu gillz—wt)

dw
a gravity wave with a simple dispersion relation w? = ngz, c=— ==++/gH (: _)



Adding rotation

Put the rotation back into the linear system, we need two dimensions and three equations again:

ou 877 -
o fv= T substitute solution (4, v,n) = (i, 9, f)e!teTmy=wt)
ot Tu= —gay remember o —> il 5y — 1m X 5 — —1w X

on ou Ov\
a+H(%+a—y)_o

Differential equations become linear algebraic equations

—iwt — fo = —1igln

—iw? + fu = —igmn

—iwn + H (¢l 4 imv) = 0 y
The unknowns are the wave amplitudes u, U, 7

The parameters are the wave properties [, m,w and the geophysical constants f, g, H



Inertia-gravity (Poincare) waves

We need to solve the algebraic system = Trivial solution % = ¥ = 1 = 0 (no flow)
—iw = f 19l u = The condition for having non-trivial solutions is that the
f —iWw  1gm v — () determinant of the matrix is zero.
det| d e f |[=a det[ e f :|—b-detl: a7 :|+c-det|: d e ]
e h i h i g i g h

This leads to: W [w2 — f2 — gH(l2 + ’m2)] =0

So the solutions are either w = 0 (steady geostrophic flow)

Or “Inertia-gravity” waves or Poincaré waves:

W = +/f2 + gHk?

w
T

~
* For short waves (large |) these waves behave like §
ordinary, non-dispersive gravity waves. >
e For long waves (small |) the frequency has a lower S 2T
limit of £, and the waves become very dispersive, ;7

to the point where they break down into coherent but
unconnected free motion in inertial circles.

Is there any way to have a large-scale gravity wave that
propagates normally on a rotating planet ? Yes ! 0 X : | ‘ ll . :
Wavenumber (k x L;)




Boundary Kelvin waves

Add a lateral boundary to the problem, cross out terms involving flow perpendicular to the boundary

82: Ef 879 Geostrophic In the x direction we have geostrophic balance, with
v — —g . . . . .

pressure and Coriolis forces alternating in direction as

balance
o crests and troughs propagate meridionally.
_ fad=—g— o
8t Oy _ _ In the y direction we have non-dispersive gravity waves
non-dispersive  \ith a fixed phase speed independent of horizontal scale
8?’] 8’& O waves
+H(+—) =0 el = VgH
8t ogr Oy )

Fe=

Northern
Hemisphere

Hemisphere

o
Northern




Boundary Kelvin waves

= Since the wave is non-dispersive, all signals must travel at
speed c. The solution for v at y=0 and time t consists of two
waves traveling in opposite directions:

v=Vi(z,y + ct) + Va(z,y — ct)

= The corresponding solution fornisn = \/H/g (=V1 + V3)

(check this by substitution:

9 0 Vi o
5 9 Ve Vi
5(—V1+V2)——\/9Ha—y(V1+V2) a5t - oy )

& Substituting this solution into the geostrophic balance
equation we can derive the x-dependence

_ On 1% f oV, f
IOS"9%:  or — g s ved "

= These relations have exponential solutions in x with a scale
distance of the Rossby radius of deformation Lr = c/f.

x x
Vi(x,ct)e Lr V,(x,ct)elr

x =0 V2 is a growing solution so we reject it as unphysical (x > 0).
>0 V1 decays away from the coast with boundary layer width Lr




Properties of Kelvin waves

Since the only admissible solution is V1, we conclude that for a system bounded on the west (x positive) the
wave propagates in the negative y direction, i.e. to the south. If x is negative this reverses so on the eastern
side of the basin the Kelvin wave goes northwards. So in the northern hemisphere a Kelvin wave will keep
the coast to its right as it is pushed against it by the Coriolis force.

Equator

»Tides are higher on the French side because
the signal propagates in from the west

In the southern hemisphere f changes sign so all these considerations are reversed, and Kelvin waves
propagate with the coast to the left.

What happens at the Equator ?
Can northern and southern Kelvin waves get pushed against each other for mutual support ?



Scales of motion near the Equator

4 At the equator

2()
=0, f=0, 8= — =298 x 107 m~tst B approximation: f = By
\ J

= Consider a single layer overlying the abyss. Pacific Equatorial Temperature

The internal Rossby radius is

v9'H ¢

f f

= How does this work at the equator where f=0 ?

Lp =

IBRBQ

14(I)°E 16(|)°E 1é0° 16(I)°W 14(|)°W 12(l)°W 10(I)°W
C Ap/p =0.002 (g’ = g Ap/p), H=100m
Lr = Req Lp = Gives gravity wave speed ¢ = 1.4 m/s

z=0 (lid) 1

c
© Define equatorial radius of deformation Req = 4/ — ~ 250km ~ 2.20

g

Y The time Teq for a wave to travel distance Req Teq = ~ 2 days

S~
aQ



Linear Equatorial shallow water model

= Consider linear perturbations on a resting basic state

ou ,On
a—ﬁy’v——g%
ov ,0n
It 529“——96—y
on Ou Ov\

= First we’ll look for a special case - with v =0



The equatorial Kelvin wave solution

Assume;oineoridional flow fa_u B Gy'v _ _g,@ A
= ot Ox
non;/c\i/i;\?:;sive % T H (g_u + g’]_) — ()
c=.\/g'H \ L J J

ov ,On
& om =75

Cross-equatorial geostrophic
balance

As before, this is a wave equation that has non-dispersive solutions with wave speed c for all wavenumbers.
So any function of x will translate at speed c. The solution at x can be any function of (x £ ct).

U>

—ct

U1

0 ct



The Kelvin wave solution

Assume no meridional flow ((‘)u 377 A
1]:0 ——,G?J'U:_g,_
ot Oz 0y O
51_5 Byu = —g 8_
non-dispersive 877 ou 0v J
Wave’S a + H % + b& =0 Cross-equatorial geostrophic
c=./g'H L y balance

As before, this is a wave equation that has non-dispersive solutions with wave speed c for all wavenumbers.
So any function of x will translate at speed c. The solution at x can be any function of (x £ ct).

As for coastal Kelvin waves, we can postulate solutions of the form the superposition of 2 independant waves

u = Ul (a: —+ ct) -+ U2 (33 — ct) where U1 propagates westwards and
U> propagates eastwards

As before, the solution for ) can be written in terms of Urand U2 1 = 4 [ — (=Uy + Us)
(which can be verified by substitution, to give
oUr _ C% U2 U1
oU, oU,
B )
ot ox

—ct 0 ct



The EKW wave properties

= The meridional structure is given by the remaining equation / (977
which expresses cross-equatorial geostrophic balance ! Byu = —g

= Substituting our solutions gives:

0 B .2 b .2
By(Uy + Usp) = _68_(_U1 + Usz) Meridional structures are: Uy ~e2c U,~e 2c
Y
% Only the eastward propagating solution U2 is exponentially decaying in y2. Note the difference with
coastal waves that depended on nonzero f, and thus, y. Now we have a y? dependence that works both to the
north and south with the same propagation direction.

-
= If we write U2(x — ct) = cyw(x — ct), where y is a dimensionless wave form in the x-direction, equatorial
Kelvin wave solution can be written:

rNORTH < A

- propagates eastwards
- non-dispersive ¢ =+/g'H
- maximum on equator

| [

Equator | N > _J : .
— -\ EKW have the following properties:
[ |

 SOUTH y

Cf. coastal Kelvin wave, propped up against the coast.

An EKW is “propped up” against another equatorial Kelvin wave.
. J




The general solution

Now we allow wavelike variations in the zonal direction including for v

u=1(ye

I(Ix—wt)

v = ﬁ(y)e i(lx—wt+%)

i(Ix—wt)

=7(y)e

Note that we specify u and n in phase with one another, but v is in quadrature with them.

rotational flow

Substitution into equatorial shallow water equations ...

divergent flow

ou ,On
o =9,
ov ,On

ot Oox Oy

877+H(8u | 8’0):0



x
Ov ,0n

on ou Ov

o T (8.2: %) 0

—iwl — 1Byv + ig' k7 =0

84\.’
w'ﬁ—l—ﬁyﬁ-l—g’a—n =0
0
—iwn + H (zkzu—l—z—v) =0
\ 8y

v = {)(y)ei(kx—wtiﬂ/Z)

_ {)(y)ei(km—wt) e:l:'ix;r/2

— 4420 (y)e’f,(k:.’c—wt)

v in quadrature with u,
+ or - makes no difference, we choose +

We want to eliminate u and n to get an equation for v.

We drop tildes and prime on g, and we use subscript notation
for derivatives. The linear system can be written:

[ wutPyp—ghn=0 (1)
0

I et Bty =0 (2)

—wn—l—Hk:u—l—Hav—O (3)

oy



0/0y(1) +k x (2) = wuy + Bv + Byv, + wkv + Byku =0

_A

w X (2)+g x 0/0y

(4)
3) — w?v + Bywu + gHku, + gHv,, =0  (B)
w X (1) — gk X (C)

3) — w?u + Bywv — gk* Hu — gkHv, = 0

(
\ (
= gHEk x (A) —w x (B) —
gHKk(Bv + Byv, + wkv) + gHKk* Byu — w*v — Byw?u — gHwv,,, = 0
—gHwuvy, + gHkByv, + (gHkB + gHwk? — w*)v + (gHk*By — Byw*)u=0 (D)

= (D) + By x (C) —
—gHwuvy,, + gHkLByv, + (gHEkB + gHwk? — w?)v + B2y*wv — BygHkv, =0

P25 [ w? kB B2
= =+ —gHw— = — k% - = - 19=0
g 2 T o' H g g’Hy ] e
d2% 52 c Is the gravity wave speed)
or ﬁ—l—c—z(Yz—yz)f):O where Yzzg’H w? —kzz—@
/ B |gH w



The general solution

Now we allow wavelike variations in the zonal direction including for v

w= a0y =p(y)elVer) n = fi(y)e’ o

Note that we specify u and n in phase with one another, but v is in quadrature with them.

rotational flow divergent flow

Substitution into equatorial shallow water equations gives

dzﬁ 2 (1)2 l Cz y <Y : oscillating solutions in y

F + —2 (Yz — yz)ﬁ — O where Yz — _2 — lz — 'B 'BZ y >Y . decaying solutions in 'y
y C C W

Y is the width of the “equatorial waveguide”’. (\

Y depends on wavelength and frequency but scales similar to Reg.
It represents the zone in which we have some meridional wave structure. | |
Outside this zone the amplitude decays exponentially with latitude. —Y 0 Y

>y




Meridional structure

It can be shown that the general solution is of the form Symmetric structures for v: n=0,2,4...

0.8 - -
/SN0 2 4
~ / —y'?/2 / 0.6 Y
vx H e —
n(Y') (¥" = y/Req) ngl
Remember that u and n have opposite symmetry to v Cross-equatorial flow 0.2
and anti-symmetric 7 0
=2
and substitution of this form into the differential equation 04
for v leads to the dispersion relation '
-0.6
w* . Pl f (2n+1)
——12-—=(Q2n+1)==
c2 w c RZ
eq
In fact this is a set of dispersion relations corresponding to Anti-symmetric structures for v: n=1,3,5...
a discrete set of meridional structures Hn(y’), the “Hermite 0.8
polynomials”.
Ho(y') =1 °9
Hi(y'") = 2y’ E’:-
_ 2 No cross-equatorial flow U2~
HZ (y,) — 4y’ — 2 (convergence/divergence) -
AN 13 ’ and symmetric thermocline
H3 (y ) — 8y 4_ 12y , displacements 0.2}
H,(y") =16y'" —48y'* —12 .. Lval
1 dH il
! = — n __ -4 -2 0 2 4
y Hn an—l + 2 Hn+1 T = ZTlHn_l yiL,

dy



. . d?
dropping primes d—"; + (Y2 —9yHv =0 solution v = H,e ¥/
y

2

should lead to non-dimensional dispersion relation Y2 =2n +1

dH,, H,
=2nH,_1 and yH, =nH,_ 1+ mal
dy 2

using



H, 2 H, 2 2
d_'u — [2an_1 — (an_1 + +1)] e~V /2 = [an_l — +1] eV /2 = lyH, — Hp11]e™ ¥ /2

dy 2 2
d?v dH, dH,

— = |H, n_ "y (yH, — Hy —v/

i [ +y— 2 y (y +1)] e

— [-H, — 2nH, + y*H,] e ¥ /?

SO [yQ . (2n u 1)] Hne—y2/2 + (Y2 . yQ)Hne—y2/2 —0

thus Y?=2n+1



The dispersion relations

= Substitution of the general solutions into the differential equation for v leads to a set of

dispersion relations: @  pl
= [« — - =(2n+1) - = There are 3 roots for each value of n 2 1.
= The entire family of equatorially trapped waves: w = w(l,n)
Reqw
4
¢ * The largest roots are for high frequencies
(T < Teq). & They are inertia-gravity waves
slightly modified by the beta effect.
3 n=s
n=2 e The smaller root for w are equatorial
i Rossby waves
2
* A mixed Rossby / Inertia Gravity wave
(sometimes called “Yanai wave”) exists for
! waves, n=_0.
ROS30Y Waves. < .
X s
rur:'.'-‘as;ézesszgzg;:: * The special case of v = 0 corresponds to
% - n = -1, this is the Kelvin wave.




Equatorial Rossby wave

Wave properties

= Odd order waves (n =-1,1,3..) are symmetric in n : Kelvin,
Rossby and Inertia Gravity waves.

= Even order waves (n = 0,2...) are antisymmetric in n . mixed
Rossby-Gravity waves

n=10"=1 n=10"=1

Westward IG wave

n=20"=1
Eastward IG wave
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Fig. 4. Pressure and velocity distributions of
eigensolutions for n=1

a: Eastward propagating inertio-gravity wave
b: Westward propagating inertio-gravity wave

c: Rosshy wave.

from Matsuno (1966)
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Equatorial Rossby waves

2 [
W [ 2n+1 . B
— —]? — 'B_ — At low frequencies w << f W = = —
c2 W qu [ + (Zn + 1)Req
Maximum Eastward ()]
group speed -
1 A Ba
_ '3 a’
Short 8 1 Maximum frequency | 0c
planetary waves
w=~—LF/l

Maximum Westward

Zero group speed

Eastward Westward phase and group speeds
group speed group speed -La?
: L / » al
-3 2 /3 -1 0

=> Kk negative, Rossby waves have westward phase propagation.
But the group velocity depends on the wavelength.

In practice the shorter Rossby waves with eastward group
propagation are of little importance because they are dispersive,
slow, and tend to dissipate.



Equatorial Rossby rays

Generally as a wave propagates its dispersion relation changes.

This is because it may change latitude, and f enters into the dispersion relation.
We will consider that f is “slowly varying”. The direction of the group velocity is given by

de  Ow/On 2w [ Bk [y 2 B cz_k: 2 2w
dy 0Ow/0k ( W c? — Y= wpi o0 cw_l_g0

(for long R-waves)

Waves of constant frequency and zonal wavenumber
will change their meridional wavenumber and thus 30°1
their direction of propagation.

- they end up oscillating about the equator by refraction

Equc

- its another way to show that they are “equatorially
trapped”

- this behaviour is modified by the presence of mean

30°S
currents




Oceanic adjustment

An abrupt change in the wind forcing can generate waves.

In this experiment an initial bell shaped perturbation to the thermocline is allowed to
dissipate in a shallow water model. We see the single bulge (n = -1) Kelvin wave
propagating eastwards and the double bulge (n = 1) Rossby wave propagating westwards.
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ENSO theories: the delayed oscillator

A mechanism proposed to explain how El Nifio can cancel itself out the following season.
Depends on wave reflection at boundaries.

SCEMATIC SURFACE CURRENTS and THERMOCLINE DEPTH
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ENSO theories: the delayed oscillator

The upwelling Rossby wave at the base of the thermocline becomes an upwelling Kelvin
wave traveling the other way. In the meantime, the original Kelvin wave leaks energy away
at the eastern side of the basin through coastal Kelvin waves
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Tropical convection In the atmosphere

= Divergence » downward motion > evaporation > clear sky
@» = Convergence » upward motion

=1L 0=}
Equatorial Rossby wave
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Tropical convection In the atmosphere

Wheeler-Kiladis space-time variance spectra
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= Large-scale forcing and transport due to transient systems

= Closure and diffusion

= Modification of large-scale potential vorticity: Impact on ocean circulation.
= Long-lived features of the atmosphere and low frequency variability.

= Atmospheric response to forcing anomalies.

= The wave-turbulence crossover and zonal jets

. T — ;" el ~
f\W&‘l‘}:ﬁ\m@\q}?R\l&



250 mb relative vorticity (ERAI DJF)




Restratification of the Labrador Sea (MEOM)

POTENTIAL TEMPERATURE at 186 m
09,/04 /1955

(Chanut et al 2008)



Example: Momentum transport in zonal jets

An eddy that gets stretched out and deformed
by a jet, will produce a convergent momentum
flux that maintains the jet against dissipation.

ur + uty, +vu, = flv—v,) — D
Geostrophic nondivergent mean flow ->
w'ul, +v'ul, = —D

(Wd)y + (W), = D + Wd



General considerations for tracer transport

= So far we have looked at small perturbations, linear systems, oscillating or exponentially growing /
decaying solutions.

.

% Consider nonlinear system 9% +v.Vg=F —-D| or 9 +J(,q) =F —D T ay
ot ot B

v=22

or

= Tendency equationforq ¢ =q+q Y=y +’

oq'

at+J(1/),q)+J(1/),q)-|-J( "+ JW,¢d)=F-D

mean flow linear waves turbulence
advection

= Budget equation for q [J(J, q) =—-JO',q)+F — 2_)]

transient “forcing” ., / ; ,//' -
» . ‘
A\ e h
’ ) . =
é ?j ‘ ' . QA
= If we have steady unforced flow J(¥,q9) =0 = q = q(¥) ), > )"‘\. N7 ,.»‘ ) @
e M B e

% This describes a closed circulation - g contours coincide with @ contours.
So nonlinearity is associated with closed circulations

If the closed circulation is large scale, this describes a gyre.
If the closed circulation is small scale, we need to relate it to the large-scale circulation.



Forcing due to transients: Closure

= Imagine we wish to simulate or predict the slow, large-scale flow. Because the system is nonlinear the
fast, small-scale component (maybe unresolved) will affect the slow, large scale.

du

& Consider the nonlinear system pr +uu+ru=20

= The average is C;—Q: +uu+ru=0

* Butthe problemisthat U F uu it's uu =uu + u'u/

1d
= Multiply the equation by u and take time mean 5 %uu + uuu + ruu = 0

% This gives us an equation for uu, but now we have a cubic term ! Q

In general we need to represent the (n + 1) order term in terms of the n™ order term.
We must make additional physical assumptions to do this.

= What is the relation between the transport of transients and the mean flow?



Diffusion and diffusivity

= Let’s go back to our tracer equation and consider a diffusive representation for the flux of the tracer q. For
the moment we ignore other forms of forcing and dissipation. Consider advection by a nondivergent flow:

— 4+ V.vqg =0 take an ensemble average [ — +V.vg= —V.v’q’]

= Let’s represent this eddy covariance through analogy with molecular diffusion, i.e. transport down the
mean gradient:

vig = —KVq

D@ hot cold
% So Dt — V.(KVq) (: V.F) where F is the diffusive flux of q. O — = .

m' Thermal transfert
through conduction

bar

= In general, K is a second rank tensor. It is usually not isotropic for large-scale flows.

0q oa
% For example V,q, = _K:Uy_q . szz—q

oy 0z

& We can estimate  k"Y ~ v'l' where v’ is a typical eddy velocity and I’ is a’mixing length”
(various scalings can be used).

But it can be more complicated...



Symmetric and asymmetric diffusion

= If we decompose K into symmetric and antisymmetric parts K = S + A.

= |sotropic diffusion corresponds to

E 0 O
K=S8=\| 0 k 0 and the diffusive flux F' = —kVq is downgradient.
0 0 £

= But if K is antisymmetric F' = —AVq and the flux is parallel to contours of g.

(if A has zero diagonal and opposite sign off-diagonal elements then Ax L X)
FNVq=—(AVq).Vq=0

% The flux is neither upgradient nor downgradient. It’s called a “skew flux”.

% A skew flux is equivalent to advection by a nondivergent flow with velocity v = VA9
The elements of A can be expressed in terms of @

= Whether or not it is appropriate to use a downgradient diffusion depends on the quantity being diffused.
We might expect conserved quantities to behave like tracers, with diffusion eroding their gradients.
For non-conserved quantities more elaborate schemes need to be considered.



Parameterization

Sophisticated parameterization schemes
use physical assumptions to determine the
elements of the tensor K.

This often involves a symmetric part and
an antisymmetric part so the scheme will
be equivalent to a diffusion along the

gradient of the tracer plus an advection by warm

a residual flow.

An example is the Gent and McWilliams
scheme, which hypothesizes energy
conversion by baroclinic instability and
formulates the eddy closure in terms of
asymmetric diffusion of thickness. Such a 0 /\ /\
scheme will tilt density contours to liberate -
available potential energy, rather than just cold

erode gradients. 90 w=0

Other schemes have been formulated in
terms of potential vorticity diffusion, or in
terms of flow dependent coefficients of K.

= Whether or not it is appropriate to use a downgradient diffusion depends on the quantity being diffused.
We might expect conserved quantities to behave like tracers, with diffusion eroding their gradients.
For non-conserved quantities more elaborate schemes need to be considered.



Potential vorticity homogenization

% +v.Vqg=V.(kVq) +S

= For steady nondivergent flow in a region isolated from the source S
V.(vq) = V.(kVg)

= Integrate over a region enclosed by a contour of .

» The left hand side integrates to zero

ffAv.(vq)dA:f(vq).ﬁdzzqfv.ﬁdzzquv.vdA:o

* So the right hand side must also be zero
/] V.(kVq) dA = flng.ﬁ dl =0
A

= This cannot be true if the contour encloses an extremum of q.
The gradient of g must integrate to zero around this contour.
So there can be no extremum of g within the contour.

& Gradients of g are eliminated, resulting in Homogenization
to a uniform value in regions remote from sources of q.

= Let’s look again at our tracer equation for q, and add in some downgradient diffusion

\
Diffusion
J (Vo) N

Away from forcing
(in depth)

Advection

(ug)




Examples in models and observations

Observed PV on isopycnal surfaces
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(Keffer 1985)




Stommel vs Fofonoft

Two extreme paradigms of gyre-scale flow:

A Stommel gyre has different vorticity balance in different regions

1
,BV = EVATS — RV/\V

Flow is forced south across contours of planetary vorticity. Its
changing vorticity is supplied by forcing and dissipation.

A Fofonoff gyre corresponds to unforced flow, so the balance is
between advection of planetary vorticity and relative vorticity.

v.VE+Bv=0v.Vqg=0 o J@,q)=0, g=q¥)

so V% + By = fn(y)

Flow conserves its absolute vorticity, so contours of absolute
vorticity are parallel to contours of the streamfunction.



Diffusion and the strength of the gyre

In a Fofonoff gyre we don’t know the relathionship between q and w, so the strength of the flow is not

constrained. Let’'s assume that the relation is linear, and reintroduce some forcing and downgradient diffusion
of g.

_ dq

Vg di/)

—Vy, J(p,q) =V.(kVq) +S

Integrating within a streamline of y: (0 = f f V.(kVq) dA + f S dA
A A

N //SdA:—anq.ﬁdl f Y G 5 di
A W " dy

- The relationship between q and w is determined by integrals

dg ﬂ‘ S dA of forcing and dissipation around the closed gyre circulation.
so — — _=4 - Integrated eddy diffusion provides the link between the q / @
dd) ff’;p K v.dl relationship and the strength of the circulation.

- In regions isolated from forcing, the numerator is zero but
the denominator is non-zero, so the field of g must be
uniform. g is homogenized.



Long-lived atmospheric flow anomalies

Can we imagine similar mechanisms at work within closed
atmospheric circulations ?

How are low-frequency patterns in the atmosphere maintained
against dissipation ?

Transient fluxes of heat and vorticity have rotational and
divergent components.

The divergent components are associated with development
or maintenance of long-lived structures.

Observational analyses consistently show that high-frequency
transient eddy vorticity fluxes reinforce the low-frequency
patterns, while transient thermal fluxes dissipate them.

Some anomaly structures may be well configured for
maintenance by transients

PNA height field and tendency due to vorticity fluxes
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Low-frequency vorticity fluxes
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PNA temperature field and tendency due to heat fluxes
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(Sheng et al 1998)

Wave maker

\/\,_J q Transient potential

vorticity flux divergence
In an idealised model of

u atmospheric blocking

(Haines and Marshall, 1987)
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Transient feedback on a forced response

Imagine the generic development

0
a—q + V.Vq = .F — D 8(]

¢ — 4+ v.Vg=H
Time average of this ot

vVg=F-D=gG

“Forcing” for mean flow can be written g

vVg=F-D—-v' Vg =H ot

SET2

Use G to force an empirical GCM

0q
5t +v.Vg=G

Add a perturbation to the forcing (say
an SSTA)

0q

—+v.Vg=G+f

o q f

& The difference between runs gives
the average response Aq.

We can also diagnose the difference
in transient forcing A(v.V Q).

(Hall et al 2001)



Transient feedback on a forced response

Imagine the generic development

0q
8t+qu—]-' D

Time average of this
vVg=F-D=¢G
“Forcing” for mean flow can be written

VWVi=F-D-VvNg=H

Use G to force an empirical GCM
dq
ot

Add a perturbation to the forcing (say
an SSTA)

0q
ot

& The difference between runs gives
the average response Aq.

+v.Vg=¢

+v.Vg=G+f

We can also diagnose the difference
in transient forcing A(Vv'.V Q).

forcing

But if we add the extra transient

44444

..............

...............
---------

-----------------

The linear _
model givesa  \c....
good approximation
to the full response

(Hall et al 2001)



The importance of nonlinearity

There is no doubt that atmospheric dynamics is nonlinear.
One need only look at the difference between cyclones and
anticyclones.

Does this mean we need a nonlinear framework to analyse
lower frequency variability ?

Non-Gaussian and even multi-modal statistics are features of
nonlinear systems.

But synoptic timescale nonlinearity can be represented as
stochastic noise plus linear damping.

The response of a linear system to external forcing can be
written:

linear operators

dx

EZ}I_I_{_I_BU\

state vector external forcing Gaussian noise

This linear system yields Gaussian statistics if B is constant,
but can deliver non-Gaussian unimodal statistics if B=B(x).
(Sardeshmukh and Sura, 2009)

EOF1

,_ Lorenz
" | system

a1

I (Overland et al 2008)




Zonal jets revisited: Ocean currents

Satellite observations
k’;?wn"r“a | ]

Altimetric observations and high resolution models
have shown that the large scale ocean circulation on
timescales of a few months is characterised by zonal

jets of alternating sign.

ssh

Ocean model U400m 2 0 10 140 180““ “140 -16; S rra— 80

60N

Latitude
o

208

12C€ 1402 16CE . 187 1 BIA}W 140 120w 1oon 8o s0W/
Longitude

(Richards et al 2006)

(Maximenko et al 2005)



Wave-Turbulence crossover

Remember the Rossby radius ? The length scale on
which relative vorticity and vortex stretching make
equal contributions to potential vorticity:

2 i vgH

Now let’s consider larger scales. Compare advection
of planetary and relative vorticity:
%3

a‘FV.V{:-I-,B’U:O — v.VE& ~ Bu

Scale analysis of this ->

U U

This is called the “Rhines scale”, where Rossby
waves give way to turbulence.

U

Compare Rossby wave frequency with a typical
turbulence inverse timescale

IBZ * 2 /8
w:ﬁwuk — k ZECOSQ

This leads to an anisotropic boundary in wavenumber
space between waves and turbulence



Collapse to zonal jets

Physically, Rossby wave solutions exist inside the .
dumbell. Scale transfer is not possible in this '
region. Cascade is therefore towards kx = 0, ky # O.
This implies zonal jets separated in latitude by Sak

scale ka.
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