Shallow water and vortic
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Atmosphere (p,)

P —
o = CSt 1 shallow water layer
over a flat bottom
-y OO OO 7 =_-H (flat bOttOm)

z =0 (lid)

1 shallow water layer
topped by a rigid lid
overlying a motionless abyss




Atmosphere (p,) interface at

PaZCSt Zl:_H+h1
hy P, u,,v,
— 7= —H (flat bottom)
z = 0 (lid)

h P -
1 1 U Vs interface at

Zi = _hl




Applying hydrostatic balance

Atmosphere (p,) at the interface

Ap ‘

hy Py, uy, vy D _p

- 7 =-H ! a:g(_H+h1)
P1 — Pa
AP
Ezgzl
P;
- = g(—hy)




Applying hydrostatic balance

Atmosphere (p,) at the interface

P, = cst 7. = —H+h b _p
l 1 ~——2 = g(—H + hy)

P1 — Pa
hy P,u, v, ap -
1 1
L e @@ ()

p 0x
Pl_Pa
= g(—hy)
pr—pa 2
Pl_Pa
= g(—h
15P1_ Ap ahl
pax_gp 0x



1 shallow water layer

Atmosphere (p,) over a flat bottom

P, = cst
10P; dh4
hy P, u,,v, p 0x — 9 (E)
-_— 7 =-H

1.5 reduced-gravity shallow
water model

1P, ,(0hy
pax_g dx

Ap

!

g—g?



Some precisions about course...

For a two-layer system:

Bui
ot

+?.L1;

3:1:+

Barotropic mode because it
triggers a flow modulation that
is identical for each layer

= Throughout the fluid, the flow undergoes the effect of the free surface variations, a
barotropic external mode, and going down layer by layer different contributions from the
stratification (the baroclinic part) add up.

Du,; oD lcah]
Li>1

pr =%, 79 %

= These N equations are strongly coupled. One cannot take one layer and solve for the flow in
this particular layer. We need to know about the thicknesses of every other layer above/below.
We solve the system of equation mode by mode. This involves finding the eigenvectors of the
matrix C and transforming the variables to get a set of decoupled equations.



Exercise

Question 1
1) Draw a diagram to represent two shallow water layers topped by a rigid lid and overlying
a motionless abyss. The difference in layer density is always Ap.

2) Derive expressions for the depth of the layer interfaces in terms of the layer thicknesses.

3) Using the hydrostatic relation AP/Ap = gz, derive expressions for the Montgomery
potential P in the two layers.

4) Write down the linear x-momentum equation in each layer (just the x-momentum)

Du1 —" DUZ —"

Dt Dt

5) Write the x-momentum linear equations (for u) as a single column vector eguation in
u=(u.,u,), v=(v4,v,) and h=(h,,h,) and the matrix C.

6) Find the eigenvalues and eigenvectors of C.

7) Find the variable transformation that gives two independent equations, and write down
the two equations.



2 shallow water layers topped by a rigid lid
overlying a motionless abyss

z =0 (lid)




2 shallow water layers topped by a rigid lid
overlying a motionless abyss

z =0 (lid)

i2a = —(hq + h,

Depth of the layer
interfaces



Solution — Question 3

2 shallow water layers topped by a rigid lid

overlying a motionless abyss Mon tgomery PO ten tial (P) in
r z=20(lid) .
/%\P/ I each active layer
= : P, uy v, Zyq = —(hy + hy) AP

= Applying the hydrostatic equation

- across the layer interfaces zi A ,0 — g Zj

Lower layer
b _p P, = —=9gApziz,
aAp = = 9Zizqa P, = gAp(hy+h;y) {(+F,}
Upper layer Py = P, — gApziq;
P — 1 Py = gAp(hi+h;) + gAphy

= YZi12
Ap | Py = gAp(2hy+h;)



Solution — Question 4

2 shallow water layers topped by a rigid lid

overlying a motionless abyss Linear x-momentum equation in
: z =0 (lid)
b Py, each active layer
/Z\/ Zy; = —hy
— P, uy v, Z3a = —(hy + hy) . — .
. e 7= 0y
Upper layer du, f —10P;
V1 =
dt po 0x
Py = gAp(2hy+h;) ou, B

37 fvi=-g §(2h1+hz)

Lower layer du, f —10P,
Vy) =
P, = gAp(hithy) 832 Po %x
37 fva = —g’&(hr"hz)



Solution — Question 5

2 shallow water layers topped by a rigid lid

overlying a motionless abyss Shallow water linear x-momentum
k z = 0 (lid) . . .
i g e equation in vector notation
;2\_/ 712 =~
— P,, u,,v, Z3q = —(hy + hy) ul vl hl
U, V> h,
Upper layer

0y ., 0 ou 0 2 1
o 1= =05 Qhithy) — —fv=—g' (7 [)h

Lower layer

ou, 0
Iy fv,=—g a(hﬁ‘hz)




2 shallow water layers topped by a rigid lid

overlying a motionless abyss Eigenvalues and eigenvectors of C

z = 0(lid)
hy P,u,v
) 4 1 412 Y1
/"\/ 7= —hy
h,
20 B V2

C is real symmetric (C = C')
= |t can thus be diagonalized,

Y j.e. there exists a basis of eigenvectors e in
which the matrix is diagonal: Ce = Jle




2 shallow water layers topped by a rigid lid

overlying a motionless abyss Eigenvalues and eigenvectors of C

z = 0 (lid)

det(C — Al ) is C’s characteristic polynomial

|G D-G D=1CT" 1)

=A*—31+1

Discriminant of the polynomialis A =15

3++/5

Polynomial roots are )\, = >




2 shallow water layers topped by a rigid lid

overlying a motionless abyss Eigenvalues and eigenvectors of C

z = 0 (lid)

— e = rh 3++5
s GJ

We look for non-zero eigenvectors e and e,
associated with each eigenvalue A, and A,

det(C — AI )=0
the system admits

(Cel — }\131 (Cez = }\282

= ((C }\11)31 = 0 an infinity of solutions < ((C }\21)32 =

el=(\/§2_1) is& ez—(\/—_lz_ ) IS one

solution of % solutlon of




2 shallow water layers topped by a rigid lid

overlying a motionless abyss Variable transformation and
: z =0 (lid) . 3
/%\P/ [ independent equations
I = —(hy + hy)

.0
9t fv—g§(Ch

A 0
_ -1 : (M
C = PDP with D= ( 0 /12)

P is the passage matrix between the canonical

base {((1)) ; ((1))} and the new base{e; e,}

"= (\/32— 1 \/E_er 1)




2 shallow water layers topped by a rigid lid

overlying a motionless abyss Variable transformation and
: z =0 (lid) . 3
/%\p/ . independent equations
b = (bR Ju P
fv=g"—Ch
dt 0x

_ . A0
c=cl=(ppP 1) =p "DP’ with D=(O /12)

P is the passage matrix between the canonical

base {((1)) ; ((1))} and the new base{e; e,}

(4 5
—2 V5+1




2 shallow water layers topped by a rigid lid

overlying a motionless abyss Variable transformation and
: z =0 (lid) . 3
independent equations

= accTh

. . A0
c=c"=(ppP1) =p TDP’  with D=(O /12)

P is the passage matrix between the canonical

base {((1)) ; ((1))} and the new base{e; e,}

Ch=C'h with h = PTh coordinates in
_ P—TdPTh]z Pp-TDA the new base




2 shallow water layers topped by a rigid lid

overlying a motionless abyss Variable transformation and

- z = 0 (lid) v v
/%\P/ [ independent equations

L = —(hy + hy)

3,
'—C'h
J 0x




2 shallow water layers topped by a rigid lid

overlying a motionless abyss Variable transformation and
: z =0 (lid) . 3
/%\P/ [ independent equations
L 220 = —(hy + y)

— ’a (CTh




2 shallow water layers topped by a rigid lid

overlying a motionless abyss Variable transformation and
z =0 (lid)

I PLuyy, independent equations

2h, + (V5 — Dh, )

—2h; + (V5 + 1)h,

3+2\/_) >




