Shallow water and vorticity

Answering some questions...

> 1 shallow water layer topped by a rigid lid overlying a motionless abyss

Answering some questions...

Answering some questions...

Applying hydrostatic balance at the interface

Atmosphere $\left(\rho_{a}\right)$
$P_{a}=c s t$
$z_{i}=-\boldsymbol{H}+h_{1}$
$z=-H$

$$
\begin{aligned}
& \frac{\Delta P}{\Delta \rho}=g z_{i} \\
& \frac{P_{1}-P_{a}}{\rho_{1}-\rho_{a}}=g\left(-H+\boldsymbol{h}_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Delta P}{\Delta \rho}=g z_{i} \\
& \frac{P_{1}-P_{a}}{\rho_{1}-\rho_{a}}=g\left(-h_{1}\right)
\end{aligned}
$$

Answering some questions...

Applying hydrostatic balance at the interface

Atmosphere (ρ_{a})

$$
P_{a}=c s t \quad z_{i}=-H+h_{1}
$$

$$
h_{1} \quad P_{1}, u_{1}, v_{1}
$$

$$
-z=-H
$$

$$
\begin{array}{r}
\frac{P_{1}-P_{a}}{\rho_{1}-\rho_{a}}=g\left(-H+h_{1}\right) \\
\rho_{a} \ll \rho_{1}-\frac{1}{\rho} \frac{\partial P_{1}}{\partial x}=g\left(\frac{\partial h_{1}}{\partial x}\right)
\end{array}
$$

$$
z_{i}=-\boldsymbol{h}_{1}
$$

$$
P_{a}=c s t
$$

$\operatorname{Abyss}\left(\rho_{a}\right) \quad u_{a}=v_{a}=0$

$$
\begin{aligned}
& \frac{P_{1}-P_{a}}{\rho_{1}-\rho_{a}}=g\left(-h_{1}\right) \\
& \frac{\rho_{a}=\rho_{1}+\Delta}{-\Delta \rho}=g\left(-h_{1}\right) \\
& \frac{1}{\rho} \frac{\partial P_{1}}{\partial x}=g \frac{\Delta \rho}{\rho}\left(\frac{\partial h_{1}}{\partial x}\right)
\end{aligned}
$$

Answering some questions...

Atmosphere (ρ_{a})
$P_{a}=c s t$

$$
h_{1} \quad P_{1}, u_{1}, v_{1}
$$

$$
z=-H
$$

1 shallow water layer over a flat bottom

$$
\frac{1}{\rho} \frac{\partial P_{1}}{\partial x}=g\left(\frac{\partial h_{1}}{\partial x}\right)
$$

1.5 reduced-gravity shallow water model

$$
\begin{aligned}
\frac{1}{\rho} \frac{\partial P_{1}}{\partial x} & =g^{\prime}\left(\frac{\partial h_{1}}{\partial x}\right) \\
g^{\prime} & =g \frac{\Delta \rho}{\rho}
\end{aligned}
$$

Some precisions about course...

For a two-layer system:

$$
\begin{aligned}
& \frac{\partial u_{i}}{\partial t}+u_{i} \frac{\partial u_{i}}{\partial x}+v_{i} \frac{\partial u_{i}}{\partial y}-f v_{i}=-g \frac{\partial}{\partial x}\left(h_{1}+h_{2}\right)
\end{aligned}-g^{\prime} \frac{\partial h_{2}}{\partial x}
$$

\Leftrightarrow Throughout the fluid, the flow undergoes the effect of the free surface variations, a barotropic external mode, and going down layer by layer different contributions from the stratification (the baroclinic part) add up.

$$
\frac{D u_{i}}{D t}-f v_{i}=-g \frac{\partial D}{\partial x}-g^{\prime}\left[\mathbf{C} \frac{\partial \mathbf{h}}{\partial x}\right]_{i, i>1}
$$

\Rightarrow These N equations are strongly coupled. One cannot take one layer and solve for the flow in this particular layer. We need to know about the thicknesses of every other layer above/below. We solve the system of equation mode by mode. This involves finding the eigenvectors of the matrix \mathbf{C} and transforming the variables to get a set of decoupled equations.

Exercise

Question 1

1) Draw a diagram to represent two shallow water layers topped by a rigid lid and overlying a motionless abyss. The difference in layer density is always $\Delta \rho$.
2) Derive expressions for the depth of the layer interfaces in terms of the layer thicknesses.

$$
\mathrm{zi}_{12}=? \quad-\quad \mathrm{zi}_{2 \mathrm{a}}=\text { ? }
$$

3) Using the hydrostatic relation $\boldsymbol{\Delta P} / \boldsymbol{\Delta} \boldsymbol{\rho}=\boldsymbol{g} \boldsymbol{z}$, derive expressions for the Montgomery potential \boldsymbol{P} in the two layers.

$$
P_{1}=? \quad-\quad P_{2}=?
$$

4) Write down the linear \underline{x}-momentum equation in each layer (just the \underline{x}-momentum)

$$
\frac{D u_{1}}{D t}=? \quad-\quad \frac{D u_{2}}{D t}=?
$$

5) Write the x-momentum linear equations (for \mathbf{u}) as a single column vector equation in $\mathbf{u}=\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right), \mathbf{v}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ and $\mathbf{h}=\left(\mathrm{h}_{1}, \mathrm{~h}_{2}\right)$ and the matrix \mathbf{C}.
6) Find the eigenvalues and eigenvectors of \mathbf{C}.
7) Find the variable transformation that gives two independent equations, and write down the two equations.

Solution - Question 1

2 shallow water layers topped by a rigid lid overlying a motionless abyss

Solution - Question 2

2 shallow water layers topped by a rigid lid overlying a motionless abyss

Solution - Question 3

2 shallow water layers topped by a rigid lid overlying a motionless abyss

Montgomery Potential (P) in

each active layer

Lower layer
$\frac{P_{a}-P_{2}}{\Delta \rho}=g z_{i 2 a}$

$$
P_{2}=-g \Delta \rho z_{i 2 a}
$$

$$
P_{2}=g \Delta \rho\left(h_{1}+h_{2}\right)\left\{+P_{a}\right\}
$$

Upper layer

$$
\begin{aligned}
& P_{1}=P_{2}-g \Delta \rho z_{i 12} \\
& P_{1}=g \Delta \rho\left(h_{1}+h_{2}\right)+g \Delta \rho h_{1} \\
& P_{1}=g \Delta \rho\left(2 h_{1}+h_{2}\right)
\end{aligned}
$$

Solution - Question 4

2 shallow water layers topped by a rigid lid overlying a motionless abyss

Linear x-momentum equation in each active layer

$$
\frac{\partial u_{i}}{\partial t}-f v_{i}=\frac{-1}{\rho_{0}} \frac{\partial P_{i}}{\partial x}
$$

Upper layer

$$
P_{1}=g \Delta \rho\left(2 h_{1}+h_{2}\right)
$$

$$
\frac{\partial u_{1}}{\partial t}-f v_{1}=\frac{-1}{\rho_{0}} \frac{\partial P_{1}}{\partial x}
$$

$$
\frac{\partial u_{1}}{\partial t}-f v_{1}=-g^{\prime} \frac{\partial}{\partial x}\left(2 h_{1}+h_{2}\right)
$$

Lower layer
$P_{2}=g \Delta \rho\left(h_{1}+h_{2}\right)$

$$
\begin{aligned}
& \frac{\partial u_{2}}{\partial t}-f v_{2}=\frac{-1}{\rho_{0}} \frac{\partial P_{2}}{\partial x} \\
& \frac{\partial u_{2}}{\partial t}-f v_{2}=-g^{\prime} \frac{\partial}{\partial x}\left(h_{1}+h_{2}\right)
\end{aligned}
$$

Solution - Question 5

2 shallow water layers topped by a rigid lid overlying a motionless abyss

Shallow water linear x-momentum equation in vector notation

$$
\boldsymbol{u}=\binom{u_{1}}{u_{2}} \quad \boldsymbol{v}=\binom{v_{1}}{v_{2}} \quad \boldsymbol{h}=\binom{h_{1}}{h_{2}}
$$

Upper layer
$\frac{\partial u_{1}}{\partial t}-f v_{1}=-g^{\prime} \frac{\partial}{\partial x}\left(2 h_{1}+h_{2}\right) \quad \frac{\partial \boldsymbol{u}}{\partial t}-f v=-g^{\prime} \frac{\partial}{\partial x}\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right) \boldsymbol{h}$

> Lower layer
> $\frac{\partial u_{2}}{\partial t}-f v_{2}=-g^{\prime} \frac{\partial}{\partial x}\left(h_{1}+h_{2}\right)$

$$
\begin{gathered}
\frac{\partial \boldsymbol{u}}{\partial t}-f \boldsymbol{v}=-g^{\prime} \frac{\partial}{\partial x} \mathbb{C} \boldsymbol{h} \\
\mathbb{C}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

2 shallow water layers topped by a rigid lid overlying a motionless abyss

Eigenvalues and eigenvectors of \mathbb{C}

$$
\mathbb{C}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

\mathbb{C} is real symmetric $\left(\mathbb{C}=\mathbb{C}^{T}\right)$ \Rightarrow It can thus be diagonalized,
$\stackrel{4}{4}$ i.e. there exists a basis of eigenvectors \mathbf{e} in which the matrix is diagonal: $\mathbb{C} \boldsymbol{e}=\lambda \boldsymbol{e}$

$$
\boldsymbol{h}=\binom{h_{1}}{h_{2}} \quad \mathbb{C} \boldsymbol{h}=\binom{2 h_{1}+h_{2}}{h_{1}+h_{2}}
$$

Solution - Question 6

2 shallow water layers topped by a rigid lid overlying a motionless abyss

Eigenvalues and eigenvectors of \mathbb{C}

$$
\mathbb{C}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

$\operatorname{det}(\mathbb{C}-\lambda \mathbf{I})$ is \mathbb{C} 's characteristic polynomial

$$
\begin{aligned}
& =\left|\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)-\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right)\right|=\left|\left(\begin{array}{cc}
2-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right)\right| \\
& =\lambda^{2}-3 \lambda+1
\end{aligned}
$$

Discriminant of the polynomial is $\Delta=5$
Polynomial roots are $\lambda_{1}=\frac{3+\sqrt{5}}{2} \quad \lambda_{2}=\frac{3-\sqrt{5}}{2}$

Solution - Question 6

2 shallow water layers topped by a rigid lid overlying a motionless abyss

Eigenvalues and eigenvectors of \mathbb{C}

$$
\mathbb{C}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \quad \lambda=\frac{3 \pm \sqrt{5}}{2}
$$

We look for non-zero eigenvectors $\boldsymbol{e}_{\boldsymbol{1}}$ and \boldsymbol{e}_{2} associated with each eigenvalue λ_{1} and λ_{2}

$$
\left.\boldsymbol{e}_{\mathbf{1}}=\binom{2}{\sqrt{5}-1} \begin{aligned}
& \text { is one } \\
& \text { solution of } *
\end{aligned} \right\rvert\, \boldsymbol{e}_{2}=\binom{-2}{\sqrt{5}+1} \text { is one } \begin{aligned}
& \text { solution of } * *
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{C} \boldsymbol{e}_{1}=\lambda_{1} \boldsymbol{e}_{1} \\
& \operatorname{det}(\mathbb{C}-\lambda \mathbf{I})=0 \\
& \text { the system admits } \\
& \Leftrightarrow\left(\mathbb{C}-\lambda_{1} I\right) \boldsymbol{e}_{1} \stackrel{*}{=} 0 \begin{array}{c}
\text { an in sinitity of sombutions }
\end{array} \Leftrightarrow\left(\mathbb{C}-\lambda_{2} \boldsymbol{I}\right) \boldsymbol{e}_{2} \stackrel{* *}{=} 0
\end{aligned}
$$

Solution - Question 7

2 shallow water layers topped by a rigid lid overlying a motionless abyss

Variable transformation and independent equations

$$
\frac{\partial \boldsymbol{u}}{\partial t}-f v=g^{\prime} \frac{\partial}{\partial x} \mathbb{C} \boldsymbol{h}
$$

\mathbb{P} is the passage matrix between the canonical base $\left\{\binom{1}{0} ;\binom{0}{1}\right\}$ and the new base $\left\{\boldsymbol{e}_{1} ; \boldsymbol{e}_{2}\right\}$

$$
P=\left(\begin{array}{cc}
2 & -2 \\
\sqrt{5}-1 & \sqrt{5}+1
\end{array}\right)
$$

Solution - Question 7

2 shallow water layers topped by a rigid lid overlying a motionless abyss

Variable transformation and independent equations

$$
\frac{\partial \boldsymbol{u}}{\partial t}-f v=g^{\prime} \frac{\partial}{\partial x} \mathbb{C} \boldsymbol{h}
$$

$$
\mathbb{C}=\mathbb{C}^{T}=\left(\mathrm{PDP}^{-1}\right)^{T}=\mathbb{P}^{-T} \mathrm{DP}^{T} \quad \text { with } \quad \mathrm{D}=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

\mathbb{P} is the passage matrix between the canonical base $\left\{\binom{1}{0} ;\binom{0}{1}\right\}$ and the new base $\left\{\boldsymbol{e}_{1} ; \boldsymbol{e}_{2}\right\}$

$$
\mathbb{P}^{T}=\left(\begin{array}{cc}
2 & \sqrt{5}-1 \\
-2 & \sqrt{5}+1
\end{array}\right)
$$

Solution - Question 7

2 shallow water layers topped by a rigid lid overlying a motionless abyss

Variable transformation and independent equations

$$
\frac{\partial \boldsymbol{u}}{\partial t}-f v=g^{\prime} \frac{\partial}{\partial x} \mathbb{C}^{T} \boldsymbol{h}
$$

$$
\mathbb{C}=\mathbb{C}^{T}=\left(\mathbb{P D P}^{-1}\right)^{T}=\mathbb{P}^{-T} \mathrm{DP}^{T} \quad \text { with } \quad \mathrm{D}=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

\mathbb{P} is the passage matrix between the canonical base $\left\{\binom{1}{0} ;\binom{0}{1}\right\}$ and the new base $\left\{\boldsymbol{e}_{1} ; \boldsymbol{e}_{2}\right\}$

$$
\begin{aligned}
\mathbb{C} \boldsymbol{h} & =\mathbb{C}^{T} \boldsymbol{h} & \text { with } & \widehat{\boldsymbol{h}}=\mathbb{P}^{T} \boldsymbol{h} \\
& \begin{array}{l}
\text { coordinates in } \\
\\
\end{array}=\mathbb{P}^{-T} \mathbb{D} \mathbb{P}^{T} \boldsymbol{h}=\mathbb{P}^{-T} \mathbf{D} \widehat{\boldsymbol{h}} & & \text { the new base }
\end{aligned}
$$

Solution - Question 7

2 shallow water layers topped by a rigid lid overlying a motionless abyss

Variable transformation and independent equations

$$
\frac{\partial \boldsymbol{u}}{\partial t}-f v=g^{\prime} \frac{\partial}{\partial x} \mathbb{C}^{T} \boldsymbol{h}
$$

$\widehat{\boldsymbol{u}}=\mathbf{P}^{T} \boldsymbol{u}$
$\widehat{\boldsymbol{v}}=\mathbb{P}^{\mathrm{T}} \boldsymbol{v}$
$\widehat{\boldsymbol{h}}=\mathbb{P}^{\mathrm{T}} \boldsymbol{h}$$\quad$ with $\quad \widehat{\boldsymbol{h}}=\binom{\widehat{h_{1}}}{\widehat{h_{2}}} \quad \mathbb{P}^{T}=\left(\begin{array}{cc}2 & \sqrt{5}-1 \\ -2 & \sqrt{5}+1\end{array}\right)$

$$
\widehat{\boldsymbol{h}}=\mathbb{P}^{\mathrm{T}} \boldsymbol{h}
$$

$$
\mathbb{P}^{T} *\left(\frac{\partial \boldsymbol{u}}{\partial t}-f \boldsymbol{v}=g^{\prime} \frac{\partial}{\partial x} \mathbf{P}^{-T} \mathbf{D} \widehat{\boldsymbol{h}}\right)
$$

Solution - Question 7

2 shallow water layers topped by a rigid lid overlying a motionless abyss

Variable transformation and independent equations

$$
\frac{D \boldsymbol{u}}{D t}-f v=g^{\prime} \frac{\partial}{\partial x} \mathbb{C}^{T} \boldsymbol{h}
$$

$\widehat{\boldsymbol{u}}=\mathrm{P}^{T} \boldsymbol{u}$
$\widehat{v}=\mathrm{P}^{\mathrm{T}} \boldsymbol{v}$
$\widehat{h}=\mathrm{P}^{\mathrm{T}} \boldsymbol{h}$$\quad$ with $\quad \widehat{h}=\binom{\widehat{h_{1}}}{\widehat{h_{2}}} \quad \mathrm{P}^{T}=\left(\begin{array}{cc}2 & \sqrt{5}-1 \\ -2 & \sqrt{5}+1\end{array}\right)$

$$
\begin{aligned}
& \frac{\partial \mathrm{P}^{\mathrm{T}} \boldsymbol{u}}{\partial t}-f \mathrm{P}^{\mathrm{T}} \boldsymbol{v}=-g^{\prime} \frac{\partial}{\partial x} \mathrm{P}^{T} \mathrm{P}^{-T} \mathrm{D} \widehat{\boldsymbol{h}} \\
& \frac{\partial \widehat{\boldsymbol{u}}}{\partial t}-f \widehat{\boldsymbol{v}}=-g^{\prime} \frac{\partial}{\partial x} \mathrm{D} \widehat{\boldsymbol{h}} \\
& \mathrm{D}=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
\end{aligned}
$$

Solution - Question 7

2 shallow water layers topped by a rigid lid overlying a motionless abyss

Variable transformation and independent equations

$$
\frac{\partial \boldsymbol{u}}{\partial t}-f v=g^{\prime} \frac{\partial}{\partial x} \mathbb{C} \boldsymbol{h}
$$

$\widehat{\boldsymbol{u}}=\mathbf{P}^{T} \boldsymbol{u}$
$\widehat{\boldsymbol{v}}=\mathbb{P}^{\mathrm{T}} \boldsymbol{v}$
$\widehat{\boldsymbol{h}}=\mathbb{P}^{\mathrm{T}} \boldsymbol{h}$$\quad$ with $\widehat{\boldsymbol{h}}=\binom{\widehat{h_{1}}}{\widehat{h_{2}}}=\binom{2 h_{1}+(\sqrt{5}-1) h_{2}}{-2 h_{1}+(\sqrt{5}+1) h_{2}}$

$$
\begin{aligned}
& \frac{\partial \widehat{u_{1}}}{\partial t}-f \widehat{v_{1}}=-g^{\prime} \frac{\partial}{\partial x}\left(\frac{3+\sqrt{5}}{2}\right) \widehat{h_{1}} \\
& \frac{\partial \widehat{u_{2}}}{\partial t}-f \widehat{v_{2}}=-g^{\prime} \frac{\partial}{\partial x}\left(\frac{3-\sqrt{5}}{2}\right) \widehat{h_{2}}
\end{aligned}
$$

