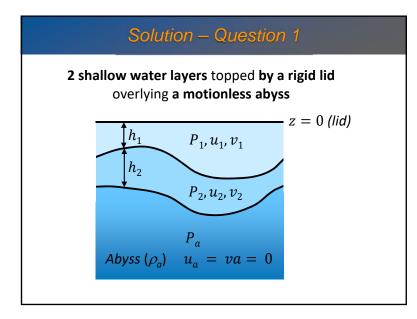
Shallow water and vorticity



Exercise Question 1 1) Draw a diagram to represent two shallow water layers topped by a rigid lid and overlying a motionless abyss. The difference in layer density is always $\Delta \rho$. 2) Derive expressions for the depth of the layer interfaces in terms of the layer thicknesses. zi_{12} ? $- zi_{2a}$? 3) Using the hydrostatic relation $\Delta P/\Delta \rho = gz$, derive expressions for the Montgomery potential P in the two layers. P_1 ? $- P_2$? 4) Write down the linear <u>x-momentum</u> equation in each layer (just the <u>x</u>-momentum) $\frac{Du_1}{Dt}$? $- \frac{Du_2}{Dt}$? 5) Write the *x*-momentum linear equations (for **u**) as a single column vector equation in

 \mathbf{u} =(u₁,u₂), \mathbf{v} =(v₁,v₂) and \mathbf{h} =(h₁,h₂) and the matrix \mathbf{C} .

6) Find the eigenvalues and eigenvectors of $\ensuremath{\textbf{C}}.$

7) Find the variable transformation that gives two independent equations, and write down the two equations.

