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= So far, we have focused on linear dynamics. We considered perturbations to the flow and
these perturbations remained small, so quadratic terms in the perturbation could be neglected. This
is equivalent to making a separation between a basic flow and the perturbation. In #6FD3.3 and
#GFD3.4, we discussed instabilities and found conditions under which these perturbations can grow
exponentially. We are left wondering what happens when the perturbations become big enough that
they can no longer be considered small relative to the magnitude of the background flow or its
gradients? How does the perturbation interact with the mean flow?

% So, in this chapter, we will introduce the idea of scale interactions in the atmosphere and
ocean. We will see how these transient systems can modify or interact with the mean flow.

= We will see how transient systems can be involved in large-scale forcing and transport, i.e.
how perturbations can transport properties and contribute to lower-frequency heat and momentum
fluxes and potential vorticity (see #GFD5.1).

= As we cannot represent every single little transient system, we will look for a systematic way
of representing their aggregate effect, their statistical effect, on the average flow (see #GFD5.2). Can
their effects be represented in terms of lower-frequency variations or average flow? This is closure.
One simple approach to closure is to consider these transient systems as a form of diffusion. Barotropic
or baroclinic gradients in the mean flow can create instabilities (see #6FD3.3 and #GFD3.4), and these
transient systems can in return eliminate the gradients by diffusion.

= |n this way, transient systems can modify large-scale potential vorticity. We will look at some
examples in which transient systems affect large scale Ocean circulation (see #GFD5.3).

= We will also review some atmospheric examples of how transients interact with long-lived
features to influence low-frequency variability (see #GFD5.4).

= Then, we will study the atmospheric response to other types of forcing anomalies. For
example, we will see how the atmosphere responds to a change in the sea surface temperature, and
how this basic response might be modified by the response of the transients (see #GFD5.4b).

= Finally, we will see how the flow on rotating planets tend to organize itself into zonal Jets
(see #GFD5.5).

This chapter will also serve as an introduction to turbulent dynamics.

GFD5.1: Scale Interactions and Transient Forcing

5.1.a) Atmospheric illustration: 250mb relative vorticity

= The video shows the relative
vorticity in the atmosphere at 250 mb (from
ECMWF ERA-Interim reanalysis) during
boreal winter time (DJF).

% The patterns are very turbulent,
portraying eddies propagating eastward in
the extra-tropics.

= If you stare at these transient systems for long enough you can pick out some features:

* The variability is more active over the oceans than over the land and the northern Atlantic
and Pacific Ocean basins are storm-track regions (see #GFD1.1e).

* Focusing on the western Pacific variability - the upstream part of the Pacific jet — we observe
that features appear to be stretched out in the zonal direction, while towards the east, turbulent
patterns seem to be stretched out more in the meridional direction.

L, This is pretty systematic and as a result, there are consequences for how these transient
systems interact with the Jet which they are traveling on (see #GFD5.1d).
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5.1.b) Ocean illustration: Re-stratification of the Labrador Sea

= Here is an example of heat transfer by POTENTIAL TEMPERATURE at 188 m
05/07/1956

transient systems influencing the mean state.

The figure shows the potential
temperature in the Labrador Sea at 165-meter
depth from a model simulation, between
Greenland and Canada.

% We see a very strong annual cycle. A
sudden cooling at the surface (blue) marks the
arrival of winter. It is associated with cold winds
coming off Labrador. This cooling is convectively
unstable and it is therefore mixed in the vertical
very rapidly. As a result, the whole water column is
cooled down to the bottom of the ocean.

= After the winter, how is the stratified
state reestablished?

', Heat is transferred by turbulent eddies. The “warm(er)” coastal current flowing around the
Labrador Sea, along the Greenland and Canada coasts, is associated with strong gradients between the
coast and the center of the basin. They favor the development of geostrophic eddies which transfer
heat into the center of the basin and gradually re-establish the stratified state for the following
summer.

5.1.c) Example: Momentum transport in zonal jets

Here is an example in which transient eddy feedback maintains the mean flow. Let's think
about zonal jets and momentum transport in zonal jets.

= We put a cyclonic eddy in a zonal jet. The figure shows a typical eddy
(a closed contour) advected by a sheared zonal jet, maximum at the center.

What will be the effect of the jet on the shape of this eddy?

% It will shear it out. It will gradually change its shape as it goes
downstream. This inspires a fresh fruit analogy, i.e. turning an orange into a
banana.

= And the fact that the eddy ends up looking
like a banana is important for the general circulation. _—........)
The variations of the jet follow this equation:

U +uuy +vuy = f(v —vy) =D

% There is a balance between the time variation plus the advection
terms, and f(v — v,) (Coriolis and pressure gradient forces bundled into one

term using the geostrophic wind) plus the dissipation.
= Taking the time average of this equation shows that the jet is diffused by dissipation and
powered by the momentum fluxes, i.e. mean dissipation is balanced by the quadratic advection terms:

Y Tord —
u'uy +v'uy, = =D
% The fluxes of momentum can be reformulated as the divergence of a flux, i.e.:
(w'v')y + (u'v')y = =D+ u'd .Theterm --a covariance between u’ and v’ - is the most

important term in this equation.
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Reynolds decomposition

= We can estimate its contribution by looking at the flow as it goes around u-

one of these banana-shaped eddies. vt
¢ In the northern half of this eddy, the perturbation flow is going
northwestwards so there is a negative covariance between u’ and v'. On the way
back, u’ is positive while v’ is negative, i.e. a negative covariance between u' and v’
* In the southern half of the eddy, the flow is either southwestward or

. Py . ] ] 'U-’+

northeastwards, with a positive covariance between ¢’ and v'. "

v

& In the north, we observe a southward flux of eastward momentum, while in
the south there is a northward flux of eastward momentum. This gives rise to a
convergence of momentum flux which will accelerate the jet towards the east and
help to maintain the jet against the dissipation term on the RHS. This is how the jet is
maintained by mature finite amplitude synoptic systems.

An that gets stretched out and deformed by a jet, will produce a
convergent momentum flux that maintains the jet against dissipation.

5.1.d) General consideration for tracer transport

= Let's formalize this by considering this generic non-linear system. The tendency equation
with advection and forcing of a tracer g (potential vorticity for instance) can be written:

0q .
E'FV.VQ—.? D

a . . . . o
N a—f plus the advection term equal sources and sinks, i.e. forcing and dissipation.

* The forcing could be the wind stress for instance and dissipative sink could be diffusion.
* The advection term can be written as a Jacobian of ¥ and q (J(¥, q)) (see #GFD2.3h):

aq ]_'(!P. q) is the advection of g by this non-
a —|— J('Ivb’ q) = f — D dNei?gent flow associated with the stream
function 1, such that 3 = _z_ga,.,d = G

dx
= We now split up the flow (of which the potential vorticity g is a diagnostic) into two
components, the average flow (noted with a bar, § and 1) and the perturbation flow which is varying

in time (noted with a prime): _ and _ The tendency equation can be written as

follows:

o, Jp, Q)+ J(,d )+ J(W,q) + J(¥',d)=F - D

at mean flow linear waves turbulence
advection

% The non-linear quadratic advection term is split into four terms:

1) mean flow advection: the mean potential vorticity being transported by the mean flow.

2) 2linear terms: perturbation PV being transported by the mean flow and the perturbation
flow transporting the mean PV. These terms gave us waves and instabilities.

3) aquadraticterm J(¥',q").

% In chapters 2, 3 and 4, we neglected the contribution of the quadratic term because it is
quadratic in the perturbation and the perturbation was small. If the perturbation is not small anymore,
this term is not negligible and we need to study what this term does.
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= If we are interested in the systematic effect of this quadratic term, its non-zero time mean,
we can form the time mean of the tendency equation, leading to a budget equation for q:

J(Ea q) = —J(Tl)’, q’) + 'T S 5

transient “forcing”

% The advection of the mean tracer by the mean flow will be balanced by the mean of the
forcing, the mean of the dissipation, and the mean of this transient forcing term. So, we now put this
term on the RHS of the budget equation and consider it as a forcing term, a forcing by the transient
fluxes. We discussed this in #GFD1.1e.

= Just in passing, we note that for the special
case of time-independent unforced flow (no time
variation and no forcing/dissipation) there is a time-
independent conservation law so that advection is
equal to zero:

J@,q) =0

% g would be strictly a function of
(g = q(3)) meaning that contours of g would overlay
contours of 1. This describes a closed circulation -
q contours coincide with Y contours. We will come
back to this no-advection state in which nonlinearity
is associated with closed circulations in #GFD5.3c.

% The figure shows some turbulence. Closed
contours for which J(y,q) = 0 can be considered
either for little turbulent eddies or for something
much bigger like ocean gyres.

GFD5.2: Effect of Transients on the Mean Flow: Closure & Diffusion

5.2.a) Forcing due to transients: Closure

= Imagine we wish to simulate or predict the slow, large-scale flow. Because the system is
nonlinear the fast, small-scale component (maybe unresolved) will affect the slow, large scale
variability.

% Closure is the systematic study of how we can represent the feedback of the on
the lower-frequency flow variation.

= Consider a non-linear development of a zonal wind u according to the following abstract
non-linear equation: du

E—i—uu—kru:o

% The term uu is quadratic and ru is linear. It is an idealized generic equation.

= Let’s examine this equation in term of low-frequency variations by taking the time average
or the low-frequency component: du

— Hui+ri=0

% We want to solve this equation for ii. The problem is that we don’t know uu:

uu Fuu ,itis uu = uu + u'u

L In 7w, there is the contribution of the transients that need to be addressed.
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= If we try to write an equation for the quadratic term uu (by multiplying the non-linear
abstract equation by u), we end up with an equation in which there is a cubic term uuw, which is of no
help: 1d
——uu + uwuu + ruu =0
2 dt
= We can do it again as many times as we want but at some point, we will need to represent
the (n + 1)"-order term in terms of the n'" order term.

% To keep it simple, we will need to represent the quadratic term u'u’ in terms of the mean
flow. And to do so, we must make additional physical assumptions. This is turbulent closure.

5.2.b) Diffusion and diffusivity

= There are various approaches to closure and one we have already mentioned is diffusion.

We can use diffusion to represent the systematic effect of transients in terms of the mean flow. We
make the analogy that the effect of the transients is similar to molecular diffusion.

% In a metal bar which is hot at one end and cold at the

haud froid e .
gian . other, molecular diffusion will transport the heat from the hot end

- —»  \__pare to the cold end and gradually the temperature will become
transfert thermique stalli . .. . -
m par conduction métallaue niform. This is because heat is transported downgradient.

% Here, we assume that geostrophic eddies act in a similar way. If there is a gradient in some
larger-scale field, the geostrophic eddies will tend to smooth out this gradient.

= Let’s go back to our tracer equation and consider a diffusive representation for the flux of
the tracer g. For the moment, we ignore other forms of forcing and dissipation. We consider advection

by a non-divergent flow: aq
— +V.wvg=0
ot q
% We split this advection term into the advection by the time mean and the transient eddy’s:
oq

— +V.vg=-V.vy¢
ot q q
= Let’s represent the eddy covariance term through analogy with molecular diffusion, i.e.
transport down the mean gradient, so: —_ -
P & v = —KVq

% This way, the transient forcing term will transfer properties down gradient and will smooth
out gradients. We can substitute it into the non-divergent flow equation in which the substantial
derivative of g is represented in term of g, as:

_ OW the trgps,
. . ansj
frt 'mg to impger the meap flow, Rt
is ¥ :
a parametenzation/closure

= In general, K is a matrix, a second rank tensor. Diffusion is usually not isotropic for large-
scale flows, meaning that diffusion in some directions might be stronger than in other directions. For

example, the flux v'q’ is represented by a coefficient (—x"”) times the meridional gradient and another
coefficient (—x¥?) for the vertical gradient: _ _
(1) g v — v _ 0208

Oy " 0z

% These coefficients come from turbulence theory. We can estimate them by using some
scaling arguments: kK"Y ~ v'l" where v’ is a typical eddy velocity and I’ is a "mixing length”.
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5.2.c) Symmetric and asymmetric diffusion
= We can decompose K into symmetric and antisymmetric parts K = S + A.

* The simplest specification is isotropic downgradient diffusion.

k0 0 % The 3 X 3 K matrix is just a diagonal matrix with the same
K=S§=]0 %k 0 constant down the diagonal and the diffusive flux is downgradient:
00k F=-kVg

* In general, a downgradient flux is associated with symmetric matrices §.

=> But this matrix can have an anti-symmetric part 4, such that: F' = — AV, and:
F.V§=—(AV{).Vg=0

% A will consist of off-diagonal elements of opposite sign. As a result, the result of this matrix
multiplied by a vector will be perpendicular to that vector (Ax L x). This means that this diffusive flux
is neither upgradient nor downgradient, but it is parallel to the contours of the mean state. This flux is
called a “skew flux”.

A skew flux is thus equivalent to advection by a non-divergent flow. Its velocity can be
represented by a stream function: v = V a). Therefore, the skew flux does not change the gradient,
it goes along the gradient.

= Whether or not it is appropriate to use straightforward isotropic downgradient diffusion
or have some anti-symmetric terms in the matrix depends on the time-scale we analyze and on the
tracer variable (conserved or not) for which we are trying to represent the effect of

5.2.d) Parameterization
= Here is an example of a parameterization that is often used in ocean models.

L It is more difficult to model the ocean than the atmosphere because the Rossby radius is
significantly smaller, a few hundred kilometers vs. a thousand kilometers. Most atmospheric models
now have no trouble resolving these scales. To resolve geostrophic in the ocean, one needs to
use a substantially higher resolution which is quite expensive to run on a computer, especially for long
simulations. There is a trade-off between the length of the simulation and how much you can resolve.

—— warm

& Imagine that the geostrophic eddy-scales

0 ‘ _ are not fully resolved in a chosen model
‘ l, L “-'T )4 l“ configuration. We thus have to represent their effect

—”E—“' e on the larger scales in some other way. The Gent and
m/\/\ McWilliams parameterization is one approach to
cold doing this. It is illustrated in the figure showing

w=0 density surfaces near the thermocline.

00—

= |sotropic diffusion would simply flatten the density gradients in the vertical.

= Another way to do this, in agreement with the mechanism of baroclinic instability we studied
in #GFD3.4, is to flatten-out the tilted density contours by advective flow causing a transfer of energy
between the potential energy stored in the slope of isentropes and kinetic energy of the growing
systems. The Gent and McWilliams scheme formulates the eddy closure in terms of asymmetric
diffusion of thickness, i.e. the circulation associated with this scheme is represented by a skew flux in
the diffusion scheme.
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GFD5.3: Systematic Effects of Transient Eddies on Ocean Gyres

5.3.a) Potential vorticity homogenization

= We discuss now the systematic effects of on ocean gyres. We study a simple case
in which the effect of transients is represented as an isotropic diffusion (see #GFD5.2b) and we will
discuss the diffusion of potential vorticity (PV).

% We are going to look at very large-scales in the Ocean and ask
ourselves what is the effect of adding some diffusion of PV on the mean-field
of PV? It is useful to study potential vorticity in this context for two reasons.

1) Because PV is conserved following the motion, so it is meaningful
to talk about its diffusion.

2) Knowing the potential vorticity implies knowing the flow. There is
an intimate connection between the large-scale flow and the large-scale
potential vorticity.

= Here is the generic advection-forcing-dissipation equation for the conservation of the
otential vorticity:
p y 3q

5t +v.Vqg=V.(kVq)+ S

The effect of transients on PV are represented as an isotropic diffusion (see #GFD5.2b)
S is a source of potential vorticity

% On the large-scales, we consider a model of steady non-divergent flow, isolated from any
sources of PV.
= The flow being steady means that time variations can be crossed-out.
= We are in a region that is sheltered from wind stress forcing, i.e. away from the surface
of the Ocean - in the deeper ocean where the flow does not feel the forcing effect S.
= Non-divergent flow implies that v. Vg = V. (vq)

> The PV conservation is written V.(vq) = V(an)

= Let’s consider a closed contour of the flow and estimate the integral of this equality over
the area delimited by this contour.
f] V.(vq) dA = f / V.(kVq) dA
A A

* The left-hand side integrates to zero.

f/Av.(vq)dAzj{(vq).ﬁdl:qj{v.ﬁdz:q/Lv.vdA:o

1) Following the divergence theorem (see #GFD1.3a), the area integral of a divergence is the
line integral around that contour of the flux of g perpendicular to the contour.

2) Since q is constant on this contour (unforced flow) then g can come out of the integral
which is now the line integral of the flow perpendicular to the contour.

3) Following the divergence theorem again, the line integral can be rewritten in terms of the
area integral of the divergence of the flow.

4) Since we imposed the flow to be non-divergent then the LHS is equal to zero within a flow-
contour (which since we have steady free flow is also a g-contour).

* The right-hand side must also be zero within the area.
— Using the divergence theorem, the area integral of the divergence of kVg must be equal to k times
the line integral of the component of gradient of g that is perpendicular to the boundary.

// V.(kVq) dA = fﬁ:Vq.ﬁ dl =0
A
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% This result means that as we integrate around this flow contour, the gradient perpendicular
to this contour must integrate to zero in a steady unforced flow.

As illustrated on the schematic, this cannot be
true if the contour encloses an extremum of q. In this
case, the gradient of g perpendicular to a flow-contour is

\Vq not going to integrate to zero. This means that the eddies
are going to transfer properties to the mean flow until
such a point is that it does become zero. The extremum
in g is going to get eroded and eliminated, until a state is
achieved in which the potential vorticity is uniform (one
constant value) throughout the region

Talking of an extremum in potential vorticity reminds us of the for
barotropic instability (see #GFD3.3e). An extremum in PV is a necessary condition to create instabilities
and generate transient flow. In turn, the transient flow will act to eliminate the source of the instability.
The final result is that all gradients of potential vorticity will be eradicated, resulting in the
homogenization of the potential vorticity to a uniform value (in regions remote from sources of gq).

5.3.b) Examples in models and observations

QG model - mid-level PV

= Here are a couple of examples.

. . e Y m 2
model. It is not the top layer of the ocean. Itis at a depth where [~ &) ¥ :t:ﬁ'

the flow is isolated from forcing. On the top panel, we observe ‘\',';:‘ - /%{: oA
a large region of uniform potential vorticity (no horizontal
gradients) where the gyre is active. The gradients are pushed
out to the edge, where there is no flow.

This is illustrated on the bottom panel, in which values
of g (vertical axis) are plotted as a function of i (horizontal axis).
It comes down to this ultimate state where

1) either there are variations in g but in that case
1P =0, i.e. there is no flow, i.e. the f-effect Tq
outside the flow region,

2) or i is varying (there is a mean-flow), in which
case q is uniform (within the gyre). {

N . . LT e Wizt i) (NS S O
* On the right is the potential vorticity from an ocean k3 -'::,‘es}vk%w‘f
P oy

Observed PV on isopycnal surfaces

* On the right is an example of ocean gyres from
observations. The lower figure shows a deeper layer
and uniform values of potential vorticity can be
observed within the gyre.

% The upper figure shows a layer nearer the surface
where the flow is not isolated from the surface forcing.
q values are not uniform but portray closed contours
around the gyre. This is different from the classical
large-scale ocean circulation theories (see #GFD5.3c).
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5.3.c) Stommel vs. Fofonoff

= In this section, we focus on the large-scale ocean circulation and we contrast two paradigms
of large-scale ocean circulation theory.

* The first one is the Stommel solution. The
Sverdrup term, i.e. the advection of planetary vorticity
(BV), is balanced by forcing and friction, so:

ﬂV - %VAT,; — RV/\V

Contours of potential vorticity are parallel to
latitude lines.

» As the flow goes south, the wind stress forces
it to cross these contours. The flow is forced to change its potential vorticity.

» As the flow goes back north, it has to become an intense jet, so the friction term can be
large enough to remove the vorticity that was injected by the wind stress.

% The Stommel gyre is forced and dissipated and the absolute vorticity is always changing.

* There is another solution in an unforced context.

» Imagine an unforced system, an Ocean gyre in
which the potential vorticity is conserved — it never
changes. This means that the flow goes around a flow-
contour, the PV-contour remains parallel to that flow
contour. An unforced barotropic system follows:

ﬂ:i—z+v‘7q=0 with g =8¢+ f

dt
v.V€+ Bv=v.Vqg=10

» There is a cancellation between the advection of relative vorticity and the advection of
planetary vorticity. The sum of the two is conserved, i.e. PV is conserved and J(1,q) = 0 (see
#GFD5.1c). This means that q is strictly a function of the stream function (g = q(1)). In this barotropic
case, the potential vorticity is the relative vorticity plus fy and is a function of 1, so that:

V2% + By = fn(v)

% This is a kind of opposite extreme view of the ocean circulation compared to the forced
dissipative Stommel gyre. It is called a Fofonoff gyre. We imagine that the ocean circulation gets into
this state due to the action of transient eddies modifying the potential vorticity field.

5.3.d) Diffusion and the strength of the gyre

= We do not know the relationship between g and . The simplest relationship we can
consider is a linear relationship, meaning that the gradient of q is proportional to the gradient of y:

dgq

= The budget of (steady) q in the upper layer involves some forcing and dissipation:

J(W,q) = V.(kVq) + 8

= To estimate the value of the linear coefficient, we can integrate this equation within a
streamline 1, i.e. around a closed contour of g.

% For a non-divergent flow, the LHS is zero (see #GFD5.3a), which reveals a balance between
a dissipative term (from the transients) and a forcing term:

OszAV.(an)dA+[/ASdA
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= Using the divergence theorem (see #GFD1.3a), we can eliminate the divergence of the
diffusion by transforming the area integral into the line integral of kVq. Vq is expressed in terms of Vi
using the linear relation we hypothesized. It follows:

= f/ASdA=—j{anq.ﬁdlz—j{bnj—;Vip.ﬁd;q :_ﬂASdA

$y ke v.dl

= The linear relationship between g and 1 is determined by integrals of forcing and dissipation
around the closed gyre circulation.

= Integrated eddy diffusion provides the link between the g / ¥ relationship and the strength
of the circulation.

* In regions isolated from forcing, the numerator is zero but the denominator is non-zero, so
the field of g must be uniform. g is homogenized as seen in #GFD5.3a.

dq . . . .
% As ﬁ is a constant, it can be moved outside the integral and we get:

% This is the other extreme view of the ocean circulation.

GFD5.4: Examples of Scale Interactions in the Atmosphere

5.4.a) Long-lived atmospheric flow anomalies

= In this section, we show examples from the atmosphere and focus on the maintenance of
low-frequency variability. We ask the questions:
= How does the atmosphere stay in a particular configuration over long periods of time?
= What is the relationship between low-frequency variations and the fast-transient eddies?

Low-frequency vorticity fluxes Low-frequency thermal fluxes

e

= Here is a first example (from Sheng et al., 1998) of a very important feature of the low-
frequency variability of the Atmosphere. The figure above shows the result of a composite analysis of
the northern hemisphere (bottom is North America) emphasizing a typical Low-High-Low Cold-Warm-
Cold configuration associated with the Pacific North American () pattern. The atmosphere very
often finds itself in this pattern, either in its positive or negative phase.

& The question here is: Does this pattern get dissipated
by the transient eddies - their systematic effect - or is it
reinforced?

Transient eddy vorticity fluxes
4

* On the left is the geopotential height tendency due to
the transient eddy fluxes during these episodes of positive PNA.
The pattern is in phase with the low-frequency pattern, i.e.
Negative-Positive-Negative configuration, thus reinforcing the
low-frequency pattern during episodes of positive PNA. The
transient eddy momentum fluxes act to maintain the pattern in
the geopotential height.
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, Transient thermal fluxes
* Conversely, the transient fluxes of temperature show a .

Positive-Negative-Positive configuration, which tends to warm up
cold regions and cool down where it is warm. Transient fluxes of
temperature are thus dissipating the temperature signature.

= In conclusion, observational analyses consistently show
that high-frequency transient eddy vorticity fluxes reinforce the
low-frequency patterns, while transient thermal fluxes dissipate
them.

= Here is a second example (from Haynes and Marshall, 1986) of a long-lived atmospheric
feature called blocking that can be observed over Europe. It manifests as a High to the north and a
Low to the south. In the wintertime, it brings very cold air from Russia to western Europe. This
configuration remained there for a long time in February 2012.

% It is interesting to analyze what transient systems coming across the Atlantic do to this
pattern: do they sweep it away or do they act to maintain it?

* Here are the results from an idealized model experiment in which a wavemaker is put
upstream to generate high-frequency disturbances. The potential vorticity flux divergence shows that
these transient eddies impinge upon this reversed dipole downstream. The transfer of potential
vorticity is such as to maintain the stable block against dissipation.

Wave maker

A%

= In conclusion, there is evidence that high-frequency transient eddy vorticity fluxes maintain
this blocking configuration and this explains why it is such a long-lived feature.

5.4.b) Transient feedback on a forced response

= In this section, we study how transient eddies modify the atmospheric response to some
other external forcing (from Hall et al., 2001). We recall the potential vorticity development equation:

dq
ot

% The time average of the potential vorticity flux is the average forcing minus the average
dissipation called G:

+vVg=F-D

vVqg=F-D=¢G
% We then split the time-averaged potential vorticity flux v. Vg into two components: the flux

by the time means (v. Vq) and the transient term (v'". Vq'). The latter is put on the RHS to be considered
as a forcing (as in #GFD1.1e and #GFD5.1c) and the sum of the forcing is then called HH :

vVg=F-D-Vv' V¢ =H

= Two forcings: one is the real forcing (G ), and another is a forcing that includes the transient
eddy fluxes ( ). These two forcing terms can be used to drive a model.
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g is diagnosed from data and is used to drive a simple
atmospheric General Circulation Model (GCM):

0q
5t +v.Vg=G

% In a second experiment, a small perturbation f’ is
prescribed. Here, we add a perturbation to the sea surface
temperature in the western Pacific. We run the GCM again with this
extra bit of forcing associated with this perturbation:

X v NVg=G+
ot

= The difference between the two long runs (see figure above) shows a
global response, characterized by a large high downstream in the Pacific, a low
over the north pole, and another high over the Atlantic-European sector.

= We ask now what the contribution of the transients in this response
is. As these two experiments will not necessarily have the same value of the
transient component to the forcing (v'.Vq’), we diagnose the difference in
transient forcing between the two experiments (A(v'.Vq"), see figure on the
right).

21 We now force the GCM with the forcing H. (instead of G): % +v.Vg=H

% If we initialize the model with its time-mean @, there is
no development because H is what is needed to stop any
development. Therefore, the initial conditions perpetuate.

Then, we add the same small perturbation f” to this forcing
and perform another simulation. We have a model in which the
transient part is already taken into account in the forcing and we
apply a small perturbation. We have a linear perturbation model.
In response to the Pacific SST anomaly, we get a response which is
not as global as in @(which was the fully nonlinear response
with modified transient eddy feedback). The linear response is
basically just a Pacific response.

So then the question is: Is the difference between these two sets of experiments due
to the change in the transient eddy forcing? Can we prove that we can represent the aggregate
transient eddy effect in a linear model?

% To test this hypothesis, we take A(v'.Vq’), scale it
appropriately, and add it to the linear model as an extra transient
forcing, giving:

dq / o
—+v.Vg=H+ f — A(W'.V¢q)
ot

= The resulting pattern resembles closely the difference
between the runsin @nd yet it is not the same kind of experi-
ment at all. In @, it was the difference between two fully non-
linear turbulent experiments, while Q3EY is a linear model res-
ponse in which the turbulence has been added as a constant
forcing.

We have thus proved that in a linear framework we can reproduce the effect of nonlinear
transient eddies in the context of the response to a heating perturbation.
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5.4.c) The importance of nonlinearity

= And we arrive at fundamental considerations about the importance of non-linearity in low-
frequency variability.

* There is absolutely no question that the dynamics of the Atmosphere and Ocean are
fundamentally nonlinear. For example, we mentioned that the difference between cyclones and
anticyclones is associated with non-linear dynamics (see #GFD2.1a).

% Does this mean that the contribution of transient fluxes to low-frequency variability is
automatically a nonlinear phenomenon? Or can it be thought of as a linear phenomenon? Changing
something, the transients change one way, then changing it in the opposite way and the transients
change in the opposite way? (That would be linear)

= We are asking two different questions related to different time-scales:

= The first question is “are these eddies nonlinear?” and the answer is “yes, definitely!”

= The second question is “is the aggregate systematic effect of these eddies in modifying the
atmospheric response to other types of forcing nonlinear?” and the answer is “yes, maybe”.

% This is not the same question and there is no universal accord in the research community.
There is a spectrum of opinions.

Supporters of nonlinear systems identify the Lorenz
attractor system, the famous butterfly attractor, as a good model
for the Atmospheric variability on low frequencies.

| Lorenz The figure to the left shows the Lorenz system mapped
L System g tin phase space. The many points show the instantaneous state
of the system throughout a long integration of the simple Lorentz
equations. They cluster very clearly onto two nodes with a
bimodal distribution in one of the variables. Here we can identify
two “regimes”. The state goes from one regime to another and
the time spent between the regimes remains quite small
compared to the time spent in either one regime or the other.

This might be a useful way to think about the Monthly mean 500mb height
Atmosphere. On the right is an example of the 1
(monthly mean) atmospheric variability represented in
terms of the occurrence of two important patterns of
low-frequency variability Pacific North America (PNA,
horizontal axis) vs. the North Atlantic Oscillation (NAO,
vertical axis). For each mode of variability, the
associated PDF is also shown.

The question is “are the points clustering in
specific regimes?” This is something that not
everybody agrees about. EOF2 |

= |t is possible that they are clustering in two
regimes and we can think of transitions between
regimes.

= Or it is possible that this impression of
clusters is due to the sample of data that is finite
(limited). In a finite sample of statistically random
variables, you are always going to find some sort of
clustering. So, it may also be appropriate to explain all
this in a linear framework.

In linear dynamics, you will generally have Gaussian statistics and not the bimodal statistics
associated with the Lorentz attractor.
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Below is a linear equation that can be used, in which x is a state vector that represents the
. dx . . .
entire state of the atmosphere. Its development d—f is determined by a linear operator, some external

forcing, and some Gaussian noise:

linear operators
dx
— =Lz +[+Bn
state vector external forcing Gaussian noise

The Gaussian noise can be modified by another linear operator while remaining a linear
system. If that second linear operator is independent of the flow x, then we still have Gaussian
statistics everywhere. It is also possible to have non-Gaussian statistics with this linear system - skewed
PDFs - provided that B is a function of the flow x. So, we can go a long way with such linear model to
analyze the low-frequency variability.

GFD5.5: Zonal Jets and Turbulence

5.5.a) Zonal jets revisited: Ocean currents

= The characteristics of the ocean circulation depend on the time scales considered:

* An instantaneous snapshot resembles a sea of eddies, i.e. little round blobs everywhere.

= A very long-time average primarily captures the anticyclonic gyres, Gulfstream, Kuroshio.

» The large-scale ocean circulation on a time-scale
of a few months is characterized by zonal jets of alternating
sign, eastward and westward jets separated by a typical
length scale in the meridional direction. o

Ocean model U400m

This is illustrated in the picture on the left (from
Richards et al., 2006) showing the zonal flow at 400 meters
depth from a long simulation with a numerical model of the
Ocean.

Latitude

The situation is a little bit noisier in the
observations, but the surface geostrophic flow and
geostrophic  vorticity, estimated from  altimetric
observations, also reveals these zonal jets.

'~
1600 aow o o
Longitude

5.5.b) Wave-Turbulence crossover
In this section, we look at the theory of turbulence at zonal jet length scales.

The | is the length scale on which relative vorticity and vortex stretching make
equal contributions to potential vorticity (see #GFD1.2a, and #GFD3.4c):

f? VgH
Vi~ gy = L~YEZ
gH i
The Rossby radius is the gravity wave speed divided by the Coriolis parameter.

= Let’s now consider larger length scales. We use the vorticity equation (see #GFD1.3b):

%—I—V.V{—I—ﬁvzﬂ —+ v.V&~ Bu

The development of relative vorticity is balanced by the advection of relative vorticity and
the advection of planetary vorticity. If the last two terms are of similar magnitude, a scale analysis
yields to a length-scale on which it is true:

U m
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L is the length scale on which . Note
that this very similar to the equatorial radius (see #GFD4.3a), except that in the square root we now
have the actual flow speed and not the gravity wave speed. This length is called the , Where
Rossby waves give way to turbulence.

Let's now focus on what happens in the
(turbulence). We compare the frequencies associated with these two processes:
i.e., the frequency associated with (barotropic) Rossby waves (see #GFD3.1c) and a typical turbulence
inverse timescale: ﬁl
*
w=—~uk
k2
The frequency associated with turbulence is the length scale of that turbulence (the
equivalent wavenumber) multiplied by a typical turbulent flow velocity scale.

Equating these two frequencies gives the spatial scales at which the two processes are of
the same order:

This equation is plotted in wavenumber space on the m "/fq,,@%
figure on the right. It looks like a dumbbell. The blue curve is the ¢
boundary between where the turbulence takes over and where
Rossby waves dominate. It is anisotropic (= not isotropic).

* For larger scales, inside the blue dumbbell, there are
Rosshy waves (propagating westwards and mainly zonally).

* For scales outside the dumbbell contour, geostrophic
turbulence prevails.

Of particular interest are the points (positive and
negative) where there the zonal wavenumber is small (large zonal scales) and there is a typical
meridional length scale. Does this particular meridional length scale emerge from an analysis of the
variability?. Yes, it does and it is the (see #GFD5.5c).

5.5.c) Collapse to zonal jets

= Here are the results of an idealized numerical experiment in which variability naturally
collapses into zonal jets.

* A turbulent model is initialized with only one single length-scale. The initial condition
resembles a sort of grid lattice where the length equals the size of the grid. In (k,, k) space, itis a
circle (k=constant).
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* Then, the flow gradually develops into turbulence and there will be scale interactions
because the dynamics is nonlinear. The variability spreads across scales and the original circle in the
wavenumber representation starts to spread out to other length scales.

* As the flow continues to develop, the variability spreads into a shape where turbulence is
everywhere except inside the dumbbell associated with the Rossby wave regime.

% Most of the energy congregates to long zonal scales and a particular meridional length scale.
This scale is the distance between zonal Jets that naturally emerges.

= This is a neat theoretical account of the zonal jets observed in the Ocean.
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