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General idea

In this chapter, we stay in the quasi-geostrophic framework (see #GFD2) and focus on Rossby
waves. We start with a general idea of what happens to a parcel of air or water if it is displaced on the
planet where there is a variation in the Coriolis parameter, i.e. what are the consequences of
conserving the potential vorticity.

We will derive the dispersion relation for Rossby waves by looking for trigonometric/wave-
like solutions. We will overview different cases:

1) Barotropic Rossby waves (see #GFD3.1) and topographic Rosshy waves (see
#GFD3.1g),

2) Baroclinic Rosshy wave, in a multi-layer model (see #GFD3.2a) and then in a
continuously stratified fluid (see #GFD3.2b). We will decompose the variability in the
vertical, i.e. extract independent vertical modes.

We will study the wave solution propagating through a non-uniform background flow with
shear. Waves are solutions with trigonometric variations and imaginary exponentials, so the time
variation is an oscillation and there is a propagation. What if the exponential becomes real?

3) It results in a perturbation that grows in time exponentially and becomes unstable.
We will review the conditions required for this to happen in a barotropic (see #GFD3.3)
and then baroclinic (see #GFD3.4) frameworks.

GFD3.1: Barotropic Rossby waves
3.1.a) Parcel displacement in a vorticity gradient

= Let’s consider as parcel of fluid:

* In a non-divergent barotropic framework, i.e. the
absolute vorticity is conserved (see #GFD1.3b) following the
parcel: g = f +¢&.

* On a planet with some curvature, i.e. the planetary /’
vorticity (Coriolis parameter) f varies with latitude (larger f to 7

7/
0

f+

the north - smaller f to the south).

= At the origin, this parcel of fluid has no relative g
vorticity (£ = 0). Imagine, for some reason, there is a f—
perturbation that displaces the parcel (a little bit) to the north,
where f gets larger.

= In accord with the conservation of absolute vorticity (f + ¢), the relative vorticity of the
flow will compensate for this increase in f and & must become negative (¢ < 0). Negative relative
vorticity is associated with a clockwise curvature of the flow.

% So, the flow curves back down towards the south and the parcel will return to its latitude of
origin. This is a stable situation, i.e. the solution oscillates such that the force that restores it to its
position of origin is somehow proportional to the distance from the origin position.

e\

7
/
/ ,
7

Rossby wave

£=0
f_

= You can imagine it overshooting and going back down south in which case it will come back
north and it will produce a wave, a Rossby wave. A wave for which the restoring force is not just the
Coriolis force, but the variation of the Coriolis force with the latitude.

% We need variable f for this to happen, so this cannot work on a f-plane.
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3.1.b) The conservation of vorticity

= We will derive the dispersion relation for Rossby waves.

= We remain in the general framework of quasi-geostrophy in which the potential vorticity
. . . D . . .
is conserved following the flow, i.e. D—z = 0, with the material tendency given by the local tendency

plus the advection terms.
% Here, the advection terms depend on:
- a background zonal flow U
- and the small perturbation flow (1', ") associated with the wave.
a d 0

D
his gi = n_— I
This gives ;= t—l—(U—l—u)5 -i—v5

= q depends on the type of flow we consider. We will study the Rossby wave dispersion
relation in three different contexts:

1) Non-divergent barotropic flow (see #GFD3.1c) =

1) Nondivergent barotropic bounded above and below by a and a
. The flow is uniform in the vertical, i.e. it is barotropic.
2 In this case, the potential vorticity is the (see
q=Py+ V= #GFD2.3h): ¢ = f + & = By + V%Y. The stream function (y)

is the perturbation of the stream function associated with the
wave and the stream function of the background flow U.

2) Then we will study the effect of variable layer thickness on ~ 2) Single layer of variable thickness
a barotropic flow (see #GFD3.1f). In this case, you can generate

vorticity by divergence and there is a vortex stretching term in

the potential vorticity formulation (see #GFD2.3h). It is often q=PBy+ V- L;fgb
called equivalent barotropic, as there is only one active layer,

the layer below is a motionless abyss. /X/

3) We will finally consider the full
baroclinic framework (see #GFD3.2)
bounded above and below by a rigid lid

3) Two active quasi-geostrophic layers
with a flat bottom and a rigid lid

o 2 o . .
q=By+ ng n a_%a_"ﬁ and a flat bottom. We impose no ‘;fi-rtlcal
2 z velocity at these boundaries, i.e. 5 = 0.
N p L \/ngl,z In this framework, we consider that the
“H 12 = f fluid is Boussinesq, so the vortex
o stretching term in the continuously-
75 =i stratified fluid potential vorticity formula

o @ =By+ VP — LT (1 — 1) is slightly simplified (see #GFD2.3i).

L If you discretize the vertical derivative

and do a finite difference, you can easily

H, 02 = By + Vz'qbg +L§2(1/;1 — 1) derive tf_1e po_tential vorticity expressions

o9 for a discretized two-layer f-rame.work

3. =0 (see #GFD3.2a). You obtain simple

differences between the stream functions.

In the upper layer, it reduces to the inverse square of the Rossby radius times the difference between

the stream function in the two layers. In the lower layer, a distinct Rossby radius (the thicknesses can
be different in each layer) times by the difference between the stream function in the two layers.
% The formulae for the potential vorticity are coupled: g; depends on ¥ and g, depends on ¥,.
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Equation

Properties Solutions

Dispersion relation

3.1.c) CASE 1: Non-divergent barotropic case

= We develop the substantial derivative in the potential
vorticity conservation equation (see #GFD2.3g), using the

2
q = ﬁy +V 'lnb characteristics of the background flow:
oy o
u=U+u=U—— and v=v' =—
dy dx
0 0 oY 0
We obtain: - (By + V) + ( - 8—¢) 5. (BYy + V*0) + —w—(ﬁ +V2) =0

We can cross out some of these terms:

* As By does not vary with time or x.

* We linearize the equation and consider that perturbations are small compared to
the mean flow. Terms with a square of perturbation are neglected.

gt(b“vzw)( %) 7&4+v%p+ (/3 + VR) = 0

d d
% The linear equation in perturbation ¥ can be written: (a ar U) Vi + B a_l,b =0
X

= We are going to look for wave-like solutions, plane-wave solutions:
¥ = Re ,%Zei(la:—!-my—wt)

= They have the form of an amplitude coefficient times an imaginary exponential:
- I is the zonal wavenumber (2 7 divided by the x-wavelength),
- m is the meridional wavenumber (2 7 divided by the y-wavelength)
- wis the angular frequency (2 7 divided by the period).

= Taking a derivative of this trigonometric function yields the same function multiplied by some
constant coefficients: o o
— = —iw ——i Vo —(1?+m?
ot T
% Substituting the solution and its derivatives into the linear potential vorticity equation gives:
—iw (12 +m?)) +il (~(2+m?))U+Bil =0
= It results in a relation between ®, [ and m (with 2 other geophysical parameters U/ and (3).
This is the dispersion relation for barotropic Rossby waves: pl

w=Ul-p e
B

~. [2 + m? and B are always positive. So, the
m
Rossby waves always propagate westwards, opposite to the background eastward flow U.

* The phase speed ¢ = ? is equal to U — 7z

* With m = 0 (i.e. the waves have an infinite meridional extension, meridionally they W

cover the entire planet), ® is proportional to —f/l. Relative to the basic state flow this term is ‘l
negative, so we plot it on the negative quadrant. The dispersion relation is a hyperbola, as zonal |
scales get bigger, frequencies get higher. This is a very dispersive large-scale wave, called a |
Rossby Haurwitz wave.

* As soon as you set a meridional scale to your structure (m # 0), the denominator

does not disappear. When [ = 0 then @ = 0. The dispersion relation is very different in

this case. For the meridionally-confined structures, the have ® ’
almost proportional to [, which means that they are almost ,

until a certain point. The maximum o is found for P

[ = m, and then for the shorter M0
waves (for larger [), they ‘

become very dispersive. J (U =0)
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Wave propagation speed

Westward propagation illustration

3.1.d) Rossby wave dispersion

w
* The phase speed: ¢ = — = U

opposite to the background eastward flow U.

* The group speed on the other hand has a sign that depends on the
sign of its numerator: Ow ﬂ(l2 " m2)

cg=—7=U+

ol (12 + m2)2

ow 33 2 2v_1y 1 _ n el ooy (F4+mP) -2  P-m?
ol =0 E(I(l i) )i_(lg }m2) Tl ) e = (12 + m2)2 77(12 t m?2)2

= On this graph, the phase speed is the arrow that points
from the origin towards the curve (whichever curve is
used), while the group speed is the tangent to the curve. l «

e
l 12+ m?2
% With [2 + m? and p always positive, the Rossby waves always propagate westwards,

(U =0)

< Relative to the background current, the direction of propagation of the energy of the wave
depends on the shape of the wave (ratio of zonal to meridional scales):

If ] = m, the group speed is zero.

If I >m , i.e. waves which have a larger
meridional scale than their zonal scale, then the ratio
term in the group speed formula is always positive.
Relative to the eastward background flow (U), the
phase speed of these waves (in blue here) will be to
the west, while their group speed will be to the east.

m <l

= From the dispersion relation, it comes that:

If | < m, the waves are elongated in the
zonal direction and the ratio term is negative. The
group speed and the phase speed are both to the west
(relative to the eastward background flow (U),). These
waves are more non-dispersive and are easier to
observe because they will not lose their shape as they
propagate westwards.

= O D

m > |

- Rossby waves are dispersive. Longer waves go faster.
- Waves closer to the equator go faster (/5 is maximum at the equator, zero at the poles)

3.1.e) Rossby wave propagation mechanism

= Why do Rossby waves propagate to the west?

* Remember the parcel which was displaced from its position of origin. To the north, it has
acquired negative relative vorticity resulting in a clockwise circulation. To the south, positive relative
vorticity has been induced, i.e. an anti-clockwise circulation.

* Imagine now a streamline of potential vorticity that follows the parcel. It has been moved

to the north or to the south, portraying a wave.

= How would the stream line be displaced by this secondary circulation?

It will be pushed away from the origin on the 1ty
west, and towards it on the east. So, at a later time, the ‘ n(t=0) - “
streamline will follow the dashed curve, effectively ,,"
moving it to the left on the diagram. The Rossby wave is A “ .

thus propagating to the west.

%, The secondary circulation induced by the

nit >0

constraint of conserving the vorticity produces the westward propagation.
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Equation

Solutions and dispersion relation

3.1.f) CASE 2: Divergent case (variable layer thickness)

= In the case of a variable layer thickness, the same
advection operator is applied to a different definition of
9 9 potential vorticity. The latter contains a vortex stretching

q=PBy+ VY- Ly term (see #GFD2.3h), which is — L;*%.
" In the PV conservation equation, the stream

’_\/ function is the sum of contributions from:
the stream function associated with the perturbation )
.{and the background flow stream function 5 = —Uy

& Vzth = 0, but for the divergent case, the contribution of the background flow U remains
in the vortex stretching term, such that:

0 N0 , 0 _
(a-i-(U-l—u)%—i-v @) (5y+v2w—LR2(¢—Uy)) =0

= As in the non-divergent case (#GFD3.1c):

] a
U+uw=U-2 and v=2

dy dx
* Terms associated with time and x variation of 8y and Lz?Uy can be crossed out.

* We linearize the equation, so terms with a square of perturbation are neglected.

% The resulting PV conservation equation can be sorted into two terms:

) B L . ol
(& + Ua—m) (V2 — Lg%y) + (B +LR2U)6—E =0

= The first LHS term is the material tendency of the perturbation relative vorticity and vortex
stretching term, i.e. the mean flow advecting the perturbation.
= The second term is the other way round, i.e. the perturbation flow affecting the mean. This

is the perturbation meridional flow (v' = a—f) advecting the potential vorticity associated with the
background flow plus £5.

= As in #GFD3.1c, we derive the dispersion relation by substituting plane-wave solutions
( _ ), and their derivative properties into the PV conservation equation. It follows that:

+ LZ2U
Mg
2+m2+ Ly
w
% The second term is more complicated than before and 2 things have changed: 1

* On the numerator, there are now two terms: Sl (as in #GFD3.1c) and Lz2UL. This
means that the background flow not only displaces the wave, but also interferes with the
properties of the wave. In particular, the phase speed of the wave (relative to the background
flow) will be altered by the background flow.

* On the denominator, there is an extra term LEZ , a positive constant. This means
that the very dispersive Rossby Haurwitz waves are not a solution to the barotropic divergent
framework (see dotted line). The solution always resembles the green line on the graph.

The phase speed is bounded and long-Rossby waves are always close to non-dispersive,

with group speed to the west (even for m = 0).
l : /.\

U=0)
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3.1.g) Topographic Rossby waves

= We focus now on a slightly different case in which potential vorticity can be changed by
externally constraining the layer thickness. From #GFD2.3h, the quasi-geostrophic potential vorticity
can be written as:

fo
q=fo+py+§—70h
Note that, in the example below, we can disregard the changes in the planetary vorticity (S3y).

= Consider an ocean getting shallower towards
the north (see illustration on the right).

% In this example, the thickness of the Ocean
is proportional to the latitude y, hpc = ay . Since the
Ocean gets thinner to the north, a is negative.

This topographic effect will add a constrain on
dh, so the quasi-geostrophic potential vorticity is:

q=fo+ﬁy+s‘—%(ay+n)

= Imagine that a column of fluid is displaced
northward.

% Because of the change in the topography,
the column is (it gets shallower).

% Its potential vorticity has to be conserved, which triggers . This
induces a clockwise flow, similar to #GFD3.1a. Just like before, the displacement can generate a Rosshy
wave, which lives on this slope.

% Mathematically, the external constraint term (topographic effect) —%ay is positive and

identical to the p-effect. In the northern hemisphere, an ocean floor that is shallowing to the north will
have the same effect as . In the southern hemisphere the ocean floor must shallow to the south.

= These waves are called

GFD3.2: Baroclinic Rossby waves

3.2.a) CASE 3: Two active layers

= In this framework, we have two

g_f —( active !ayers in \.N.hiCh t.he guasi-geostrophic
g = ﬁy + v2¢1 . L1_2 (1’[}1 _ ¢2) zgt':e[;;cglh): vorticity is conserved (see
a1 = ! :151 ~ Hil(f +& _Hilah)
@2 = By + V3 + Ly (1 — ) qz:f;gzzHiz(f+€2+HL28h)
% =0 = We retrieve geostrophic stream

functions for each layer (see #GFD1.2e):

1 1
foxul = —p—VPl =_gV(h1+h2) and foxuz =_p_VP2 = _gV(hl‘}'hz)_g'th
0 0

[0} =%(h1 +h;) and Y, :%(fh + hy) +%h2

% The interface displacements (from the rigid lid) are §h = —h, = %(1,01 —1,). Therefore,

the vortex stretching term is a coupled term defined in terms of the difference between the two
stream functions.

66 GFD3.2: Baroclinic Rossby waves



Equation

Decoupling and modes

Dispersion relations

= As in #GFD3.1f, the conservation equation can be expanded by using the advection
operators defined in terms of the stream function. ¥ For simplicity, the background flow (U) has been
disregarded in this example. Simplification of time and x-invariant terms and linearization yields:

0 0
5% (V291 — LT (31 — )] + ﬁ% =0
0 0
o [P + L1 — o)) + B2 =0

% As in #GFD1.2f, the two equations for the potential vorticity are coupled (the top layer
equation depends on ¥, and Y, so does the bottom layer equation).

% The problem now is to decouple these equations. Similar to the shallow water equations
(in #GFD1.2), we have to define new variables that are a linear combination of 1; and 1, which will
provide two independent equations. For this example, we do not need to compute the eigenvalues
and eigenvectors of the coupling matrix. The variable transformations are more straightforward.

1) We can first define a barotropic mode, noted 1/3, as the weighted sum of the stream
functions by the layer thicknesses.

%= Hivy + Havbp
H, + Hy
% It can also be expressed in terms of the Rossby radius:
-2 -2
Ly "1 + Ly "2
I

-2 =
R =Li? 472

Y=
2) We can define a 1[3 which is just the difference between the two layers:
Y =11 — P

= If we manipulate the set of equations so the variables are 1 and 1, we obtain two
independent equations, one for the barotropic mode and one for the baroclinic mode:

d PN Y.

% Naturally, the barotropic mode equation resembles the barotropic potential vorticity
equation (see #GFD3.1c), while the equation includes an extra stretching term.

=These two modes are associated with distinct dispersion relations:

d w=— L
o C BR+m2+4 L w

¢ The barotropic mode dispersion relation will depend on the shape of the waves from
the extreme Rossby Haurwitz wave to the non-dispersive long barotropic waves (see #GFD3.1c).
* The is slower and its dispersion relation has a Rossby radius
term in the denominator L? = L2 4+ L, ? and always yields almost
non-dispersive long Rosshy waves.

3.2.a) CASE 3: Two active layers 67



Vertical structure

Vertical separation

3.2.b) CASE 4: Extension to the vertical continuum

a = Let us now consider the dynamics of linear
2z =0 waves in stratified quasi-geostrophic flow on a (-
plane, in a domain confined between two rigid

g=PBy+ V¥ + RO (f_fipsal) surfaces at z =0 and z = —H, with a resting basic
[ A state.

W _, % The quasi-geostrophic_potential vorticity

0z for a continuously stratified fluid is conserved

following with the flow (see #GFD2.3i).

= The interior flow is governed by the quasi-geostrophic potential vorticity conservation (see

#GFD2.3i):

dg B

% As in #GFD3.1f, the conservation equation can be expanded and linearized, leading to:

] 1a(fozalp)]+ oy

Ny R T _
ot [V V5 \P N ez ax

0
poz

% If the boundaries are flat, rigid, and slippery surfaces, thenw = 0 at the boundaries.
Also, if there is no surface buoyancy gradient, the linearized equation is:

) (au)
ot \oz

= As in the single-layer case (#GFD3.1c), we seek solutions of the form of plane-wave
solutions, ) = Re 'l,b(z)e'(“”"'m”_“t), where (z) determines the vertical structures of the waves.

)ZOatz=0andz=—H

% We indeed have to account for the fact that the wave amplitude might vary in the vertical.
For the two-layer case, we had two modes because we had two layers. For the vertically continuous
case, we have functions of z.

= Substituting the solution and its derivative into the linear potential vorticity equation does
not yield a simple algebraic expression. It results in a differential equation for the wave coefficient

P(2): ; 10 2 1) ;
of e merir s L (D) gy

p oz
% To solve this equation, we make a separable dependence assumption, implying that
horizontal and vertical structures of the waves can be separated, I,E(z) satisfies:

10 ( fo°09(2)
poz PNZ g,
= Then the equation of motion becomes:

—w[(P+m?) +TlY—plp=0

) = -T)(z) (*) ([isthe separation constant)

% And the dispersion relation follows:

Ll
) = =
(2+m2)+T
= Equation (*) constitutes an eigenvalue problem for the vertical structure, with boundary
. a . . . .
conditions a—j = 0atz = 0and z = —H. The resulting eigenvalues I" are proportional to the inverse

of the squares of the deformation radii for the problem and the eigenfunctions are the vertical
structure functions.

What do these vertical structures look like?
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A simple example:

= For simplification, we consider waves propagating in a Boussinesq fluid, with a constant
stratification. The eigenproblem for the vertical structure (with previous boundary conditions) is:

2527
fo® 0% (2) + 0 1
— = —TY(z) (** z=0
e = @ (+9)
% There is a sequence of solutions to this equation, namely:
Pn(2) = cos(nmz/H), n=1,2..., k, =nn/H n=0
n=1
= The first solution (n = 1, blue line) is half a wave in the =3 ?\
vertical, the second solution (n = 2, green line) is a full-wave in the
vertical. The third mode is one and a half waves in the vertical, etc...
These constitute n baroclinic modes.
% The structure of the baroclinic modes becomes more
complex as the vertical wavenumber n increases. -

» Each mode has a different eigenvalue:
2
— 2(Jfo _
I, = (nm) (NH) , n=12..
® This equation can be used to define the deformation radii for this problem, namely:
1 NH N
JL, nfy  foky

» The phase speed of the Rossby waves is given by w /L.

L, =

pl

2
(12 + m2) + %kﬁ

= The dispersion relation is different for each mode: w=—

% For each different vertical structure, we have a different Rossby wave with different properties.
% For each mode, Rossby waves have a different phase speed.

A more realistic stratification:

= In a Boussinesq fluid, the eigenproblem for the vertical structure is more complex as the
stratification depends on the vertical (N2(z2)):

9 (ﬁ avﬁ(z))

z=0

0z\N? 0z =@ (=)

—

% For a stable stratification, this differential equation with its o
boundary conditions is reduced to a Strum-Liouville system which can =1
be solved numerically. =3

= The structure of the baroclinic modes which depends on the
structure of the stratification, becomes increasingly complex as the
vertical wavenumber n increases.

= The variability of the vertical structure is confined in the
thermocline layer where the stratification is maximum. 7=}

% In addition to these baroclinic modes, the barotropic mode with n = 0, that is 1,[3(2) =1,
is also a solution of (*) for any density profile (black line).

% The dynamics of the barotropic mode is independent of height and independent of the
stratification of the basic state, and so these Rossby waves are identical to the Rossby waves in a
homogeneous fluid contained between two flat rigid surfaces (see #GFD3.1c).

3.2.b) CASE 4: Extension to the vertical continuum 69



3.2.c) Vertically propagating Rossby waves

= Rossby waves propagate horizontally, as the restoring force is in the horizontal.

% But they have a vertical component to their propagation as well. For instance, Rossby
waves can be out of phase in different layers, and they can thus effectively propagate with a vertical
component to their propagation.

= The vertical wavenumber for each mode k,,,, = nr/H can also be expressed in terms of ¢,
the gravity wave phase speed for the n-mode, as k,,,, = N/c,,. ¥ ¢, is not the Rossby wave speed!

= The dispersion relation for very long Rossby wave (I2 + m? « kZff#/N?) can be
approximated, as:
Bl BIN? _ Blc?

(12 + m2) + Ij\%kg fozkr% foz

w=—

2 2
= The horizontal group speed is: 0w = _BN" - _Be
ol J2k2 J?

Ow _ 2BIN?  2plc)

= The vertical group speed is: —— = —
group=p 9k, ~ [k [N

% We can trace the signal path associated with the Interannual RMS
vertical propagation in the x — z plane by calculating the
ratio between the two group speeds:

v
|
|
i
|

dz _ ¢ _ _2en _ 2fw
dr  cf N BNc,

!
\l
|
|
|
o

Depth (m)

This provides the slope at which the energy

propagates, allowing us to ftrace the direction of - ;"
propagation of perturbations. d\' il

On the right is a figure by Vergara et al. (2017) Ot |, A ‘
highlighting a ray, showing the propagation of a ’:;?ﬁiﬂff’f;, e 2 140°W  100°W

perturbation to the thermocline depth. It gives 5200

observational evidence of vertically propagating Rossby R 5 10 15 20
waves. m

3.2.d) Observations

Below is a (quite old) global longitude-time representation of the Sea Level anomalies
(perturbations) at 25°S from Topex/Poseidon altimetry data from 1993 to 1998. The longitude in
degrees covers the 3 tropical Oceans: Pacific, Atlantic, and Indian.

The diagonal stripes are the signature of
westward propagation. It takes about five years
to cross the Pacific basin. This cannot be the
signature of an external/barotropic Rossby
wave, because that would go too fast to be
picked up by this altimeter time resolution
(dt=10days). It could be the adjustment of the
sea level to a perturbation on the thermocline,
i.e. the trace of a (slower) baroclinic Rosshy wave
traversing the Pacific in a few years. However, it
is not entirely sure whether this is exactly what
it is or whether it has to do with non-linear
phenomena like eddies.
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General idea

GFD3.3: Barotropic Instability

3.3.a) Growing Rossby waves?

= What happens when we allow the basic state flow to become more

interesting/complicated?
* Up to now, we have assumed that the basic state flow is just uniform westerlies (U = cst).

Qur parcel was displaced around an equilibrium controlled by a horizontal restoring force and it
created a Rossby wave (see #GFD3.1a).

+ £<uf\

/

P STABLE
I\
f+ No curvature
induced
i
- Shear background flow U
>0

f= ¢ UNSTABLE

= What happens if the basic flow resembles a sharp jet in the westerlies, with strong

meridional shear?
* At the origin, the relative vorticity (¢) is not zero anymore. Imagine dropping a wheel into
the flow, it will spin anti-clockwise (because of the shear), i.e. with positive relative vorticity (¢ > 0).
% - When the parcel is moved north, the planetary vorticity gets bigger (f 7).
- According to the conservation of potential vorticity (absolute vorticity f + §), we would

expect the relative vorticity to get smaller (¢ \).
- but the background flow was chosen such that its shear is smaller there than in the south,

so no secondary circulation develops (no curvature is induced). The particle just goes north, as if it is
allowed to just take off.

= This is the beginning of the consideration of instability.

3.3.b) Perturbations on a parallel shear flow

= Let’s consider a

2 _ — . .
= [-}y LT 'l,[) on a Bpla?e (f = fo + By), with a geostrophic parallel
shear flow in the background: 1 dp
u=1uy) = — -
pf dy
= On top of the background flow, we have perturbations:
=uly)+u =1u i d v=v= v
u=u(y)+u =u(y) 3y an v—v—ax
% The momentum and continuity equations can be written:
ou n ou n ou 10p
— 4+ u—+v——fv=———
ot dr Oy p Ox Ou n ov _ 0
v  Ov v . _ 10 9z~ Oy
ot ox oy  poy
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Dispersion relation

The waV

= Linearization yields:

6u’+_6u'+ ot , 1ap’
at “ax ”ay fv p 0x
6v’+_6v' = 1ap’
at ”ax fu' = p dy

= The vorticity equation is derived by taking the curl of the momentum equations

2 a e A S ) |
(5% (2) - 5(1)) and simplifying. It follows: P + Uz v 3z +v 3y =

0

% In terms of the stream function, the linear vorticity equation on a -plane writes:

% We obtain a vorticity equation in which:
* The first term is the advection of perturbation vorticity by the background flow,
* The second term is the advection by the perturbation flow of the absolute vorticity
associated with the basic state.

= The difference compared to the uniform background flow case (#GFD3.1c) is that we have
meridional variations (shear) in the basic state flow.

= From the linear vorticity equation in a parallel shear flow (see #GFD3.3b), we derive a
dispersion relation for the Barotropic Rossby waves by introducing solutions of plane-wave form:

W = Re e HmI=88) (similar to #GFD3.3b):

> Note the presence of the relative vorticity of background flow (U, in the inner term.

(a) Stationary wave number: JFM 2014

3.3.c) Stationary Rossby Waves

= Atmospheric scientists are interested in
stationary Rossby waves, i.e. Rossby waves which stay in
place, with @ = 0. The relationship between the properties
of the wave ({2 and m?) and the background flow follows:

U(® +m?) = (8- Uyy)

% There is a relation between the horizontal
wavenumber k (k? = I2 + m?) and the background flow:

U
elength is 21 Iﬁ _

= For the stationary wave to exist, the
wavenumber has to be real, i.e. (B — Uyy)/U has to be
positive. This means that f — U,,,, must have the same sign
as U (which usually means both must be positive).

% Fig.c (from Coelho et al., 2016) shows the
meridional gradient term (U,,), which is positive almost
everywhere. This means that for stationary Rossby waves to
exists, we must have easterlies. Fig.b shows the associated
zonal wind component (U) and Fig.a represents the
stationary wavenumber k. White areas denote regions in
which g —U,, and U have different signs and k is
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Rayleigh equation

complex/imaginary. In these regions, stationary or very low-frequency Rossby waves cannot exist.
Contrastingly, there is a large area in the eastern Pacific where stationary Rossby waves can exist, this
is the pacific waveguide.

= Ray paths of the stationary Rossby waves can also be calculated as before (see #GFD3.2c)

from the ratio of the zonal group speed {Z—T) and meridional group speed (g—:t):

(12 —m? 283.lm
cg:(U+ﬁ( KA )a_ ﬁk4 ) (Be = B — Uy, k2=l2+m2)

% Plotting the different components of the group speed provides the theoretical direction of
the stationary Rossby wave, as illustrated in Fig.a.

3.3.d) Growing solutions

= Whenever we consider waves, the other side of the coin is instability. Let's get on to this
idea of a solution that can grow. A gravity wave is stable, while a thunderstorm is unstable. A Rosshy
wave is stable and barotropic instability leads to rapid development. In #GFD3.3a, we considered a
parcel of fluid that can take off in the meridional direction.

We are seeking for the linear vorticity equation in a parallel shear flow

derived in #GFD3.3b:
0 0\ s d?u\ oy
(a*“&)vw+(‘aﬁ)£—°

= In the linear vorticity equation, the coefficients of the x-derivatives are not themselves
functions of x. Thus, we may seek solutions that are harmonic functions (sines and cosines) in the
x-direction, but the and we seek solution such that:

w(a’: Yy, t) = ¢(y)ei(l$—wt)

% We substitute this solution into the vorticity equation (see LEEIRGELEIIGIE on the
following page) and it is very similar to what we did with the vertical dependence in #GFD3.2b. We
obtain a differential equation for ¢p(v), namely:

¢ B — d*u/dy?
Py =0
dy u(y) —c
% This is the , in which
¢ = w/fl, known as . We are not going to solve this equation! We are going to

analyze it for the possibility of growth.

= The wave part of the solution is trigonometric with imaginary exponentials. But if what is
inside the exponential has an then you would get a real exponential.

* If wis purely real then ¢ = @/l is the phase speed of the wave.

* If @ has a positive imaginary component («;) then the wave will grow exponentially and will
thus be P W= Wy +iw;, W' = w, — iwjis the complex conjugate.

% Supposing that [ is real, the phase speed ¢ = @/l can be complex too:

c=cp+ic, ¢ =cp —ic
% [ could be complex but it would not add anything. It would just be more mathematics.
We are interested in whether it is possible for ¢ to have an imaginary part. Because if it does

that means w has an imaginary part, which means there is a possibility of instability. We are going to
analyze for the possibility of ¢ having an imaginary part.

= = If we add channel boundary conditions (¢p = 0 aty = 0,L), in general, we get a set of
solutions for ¢ associated with complex conjugate pairs of values for ¢ (or w). The imaginary part of
the solution is associated with growth or decay. The growth rate is the imaginary part of w.
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Details for the derivation of the Rayleigh’s equation

o 0\, d*u\ o B i(lz—wt)

a ,, . d
V29 = Pgq + tyy = oz (¢l e<>) + By (¢ye<>) = (_9’512 + ¢yy) e~
Yy = pile<”
(=9 1 + Byy) HAT(—D L + Byy) + (B —Tyy)pil = 0

_%)(ﬁbyy —¢ 12) + H(‘3’534'3;! - ¢l2) + (ﬂ - Hyy)‘#’ =0
— (%= 8) (G — 61+ (B—Tpy)p =0

(@ —c)(pyy — ¢’12) + (B —Uyy)p =0

¢yy - l2¢’ + (ﬁ___ uyy) (b =0

u—=c
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Rayleigh equation

Rayleigh criterion

3.3.e) Conditions for growth: the Rayleigh criterion

= = If we add channel boundary conditions (¢p = 0 at y = 0, L), in general, we get a set of
solutions for ¢ associated with complex conjugate pairs of values for ¢ (or ). The imaginary part of
the solution is associated with growth or decay. The growth rate is the imaginary part of w.

d? — d*u/dy?
—¢—12¢+—ﬁ_ /dy =0
dy? u(y) —c
= We multiply by the complex conjugates of ¢ and integrate the

equation across the domain from 0 to L. The two first terms are integrated by parts.

d
d_y(¢¢y) = ¢§ + ¢y, = d(ggy) = d’i dy + ¢oyy dy

L L L
[ B(8yy — 126) dy = ] (86yy — 126%) dy = fo d(6,) — [0 (6,)° dy — fo 26 dy

L
— [¢gglk — [ I6u1% + 1262 dy
0

L 2 L g _ J427/4.2
It gives: —/ ‘@ +1%¢|? dy+/ M|¢|2dy=0
0 dy 0 u-—=c

. The equation equates to zero if its real (see #GFD3.3f) and imaginary parts are both zero.

The first LHS term is positive definite and real. Therefore, if there is anything in
this integral, it must be in the second term.

= To get rid of the imaginary part in the denominator, we multiply top and bottom by
(1 — c)*. We get &4 — ¢ on the outside of the integral. We do not care about i or the real part of ¢
because they are both real. We only care about the imaginary part of ¢ (c;). This procedure allows us
to isolate the imaginary part of the integral:

N
of, (- 5F) moaptr =0

This quantity has to be equal to zero because it is the only imaginary bit of the whole

equation.
% Either - ¢; = 0, i.e. there is no imaginary part for the phase speed and the flow is
or -¢; # 0, in which case the integral must be zero.

= How can this integral be zero? The ratio is real and positive, which means that g — u,,,, is
either zero everywhere or at the very least f§
between (0 and L).

= Uyy

. . o d L o Ju
This term, which can be written @(fo + By — uy), i.e. the meridional ""thedu” must

. . . . . . bet N som
gradient of the absolute vorticity must change sign somewhere in the domain. - %’_ If the g, e:vee" (0ang | ¢

This is a necessary condition for the integral to be zero, which is
- a necessary condition for the phase speed to have an imaginary part, which is
- a necessary condition for
This is the

The condition is to have an extremum (maximum or minimum) in the absolute vorticity, i.e.
its gradient changes sign somewhere in the domain, i.e. the velocity profile has an inflection point.

This Rayleigh condition is a for barotropic instability.
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Figrtoft criterion

3.3.f) More conditions for growth: the Fjgrtoft criterion

There is another necessary condition called the . The Rayleigh condition
dealt with the imaginary part of the linear vorticity equation in a parallel shear flow. But the

must also be satisfied, so:
“19¢)° ‘ d’u\ ¢l
—_ 1K 21d 7 — _ | —
f( . |cp|) v+ | @ cr)(ﬁ dyz)lﬁ_cl

The first LHS term is negative, which means that:

dy
0 " dy2 |ﬁ - Cl
This inequality f A(u = C) > 0 is similar to the imaginary part of the equation we dealt
with deriving the ,i.e. f A=0

It consists o-f decomposing (u — ¢) into two terms: (u — ug) + (uy — ¢):
JAu—w)=[A(u—c)+ [A(c—ug) >0
With (¢ — u,) being a constant and with [ A = 0, the last term cancels.
It follows that [ Alw — up) > 0
4|2

With — > > 0, this means v
|u - C| Som uﬂ, (ﬁ'-—uo ﬂ _ )
- - "€Where ; Uy ) my
(“ = UO)(ﬁ e uyy) : CIf é’;he domajp, st be Positiye
m'ght hav an in

Large values of uy:
For a very large positive value of u,, (u — uy) < 0 and (ﬁ - ﬁyy) must be < 0 somewhere,
For a very large negative value of ugy, (u — uy) > 0 and (ﬁ - ﬁyy) must be > 0 somewhere.
This a weaker version of saying that (ﬁ —ﬁyy) must change sign. This is the
, saying that the gradient of the absolute vorticity has to change sign in the domain.
So large values of u, add nothing to the Rayleigh criterion.

Medium values of u:

It is most useful to choose 1, to be the value of U(y) at which (ﬁ - ﬁyy) vanishes. This leads
to the . Moderate values of u,, such as (u — u,) also changes sign in the domain
somewhere, adds an extra criterion which is more of a constraint than just the (see
example in #GFD3.3g). The is satisfied if

, and not at the boundary or at infinity — the velocity profile must have
an inflection point inside the flow. necessary condition is than the

% Both and criteria are just necessary conditions. They are not sufficient
conditions. This means that, when analyzing a potential vorticity map, if one of these conditions is
satisfied, it does not mean that the flow is unstable, it means that it is possible for the flow to be
unstable.

On the other hand, the non-satisfaction of a necessary condition is a sufficient condition, which
means that if the or the condition is not satisfied then the flow is stable.
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3.3.g) Stable and unstable profiles

= In the examples below, parallel shear-flow could induce instability. The left column displays
the zonal component of the flow, while the right column shows the associated second derivative.

. . 2+ .
Poiseuille Flow Vo i Vo d“u stable (Rayleigh) -
(u=1-y3) -~ : dy? no change of sign
i0 1 ! 5 0 5

1) A Poiseuille flow corresponds to the quadratic form of a viscous fluid flowing in a pipe. The

derivative of the vorticity is a constant that does not change sign in the domain. By Rayleigh’s criterion,
it must therefore be stable.

L _ d*u .
Gaussianjet yo u yo il possibly unstable —
dy? change of sign
1U 1 ! 5 0 5
1 1
. . 2_
sinusoidal . 7 i d°u possibly unstable —
dy"’ change of sign
.11 0 1 ! 5 0 5

2) A Gaussian jet has an exponential form with extrema. It is therefore potentially unstable.
3) A sinusoidal profile has another sinusoidal function as its derivative. Likewise, this flow is
potentially unstable.

% The B-effect can be either stabilizing or destabilizing. If the f-effect were present and large
enough to have (ﬁ - ﬁyy) one-signed, it would stabilize the Gaussian or sinusoidal jets.

. 1
pg'ynog’"a' - &2u stable (Fjortoft)
(boundary yo U yo 2 vorticity extrema at the
extrema) dy boundaries
_’1 0 1 ! 5 0 5
4) This third-order polynomial profile is by (note that the vorticity

extrema are at the boundaries).
- By the Rayleigh criterion, it could be unstable because the basic flow vorticity has extremes.
-The criterion dictates that i has to have the same sign as —,,,, somewhere in the
domain. Here, they have opposite signs everywhere. It thus fails criterion. Fjgrtoft's u,
constant could shift & but the sign requirement must be true for all values of 1. In this case, it fails for
uy = 0. The polynomial profile is thus

3.3.h) Physical mechanism

How does the flow become barotropically unstable? Here is an example of a background flow:

=

-1 —- o

i

= To the south, we have uniform easterlies, and to the north, uniform westerlies. In these two
regions, there is no background vorticity.

= |In between, there is a transition zone with a strip of parallel shear flow, i.e. a strip of
background negative vorticity (clockwise) — an extremum. The flow is potentially unstable.
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% Consider a small perturbation, such
as a streamline is moved slightly to the north. It

exports its vorticity into a region where there is e W W

none. At the same time, on the other side of the
vorticity strip, but just out of phase, the same
thing happens.

The secondary circulation is going to

=) R )

GG B |
. A

displace the wvorticity contours, so that it - ' " . > .

deforms the vorticity strip and the situation
amplifies and the deformation continues.

GFD3.4: Baroclinic Instability

3.4.a) Baroclinic instability

= It is similar but for a baroclinic flow, in which there is a vertical dependence in the

background flow. How would a perturbation grow on this sort of flow?

% Let’s start by thinking about energy. Instabilities are growing perturbations, where do they

get their energy from?

- We have seen in #GFD3.3 that barotropic instabilities take their energy out of the horizontal

shear of the background flow.

- Baroclinic instability also takes its energy from some property of the background flow.

Let’s consider the configuration shown in the figure below. Upward is at the top and

northward to the right.

We define a very idealized geophysical situation on a
rotating planet, in which there are tilted layers of different
densities. To the north and at low levels we have heavy dense
fluid (cold water in the ocean). Towards the equator and at upper
levels the water gets warmer and lighter. In between, there are
tilted homogeneous density layers. In each of these layers of
different density, the colored dot is placed at the center of
gravity of the layer. Note that if it is in the atmosphere, we need
to take into consideration the compressibility of air and we must
consider potential temperature.

If we take all these layers and flatten them out, where
would the center of gravity go? Imagine filling the same amount
of space and laying out each layer horizontally. The densest layer
is spread horizontally at the bottom, while the lightest layer
becomes the surface layer of our ocean. The center of gravity of
the denser layers has moved downwards and for the lighter layers
it has moved upwards as the fluid rearranges. The center of
gravity of the whole fluid would go down because heavy layers
have more influence on the total center of gravity than the lighter
layers.

% By rearranging the fluid, we have moved the center
of gravity downwards. This means we have liberated potential
energy to supply kinetic energy. Release of instability can be
considered as a transfer of energy from a basic state to a flow.

terward sice

ECU

Poleword swde
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3.4.b) Sloping convection

Sloping convection is another way of thinking about baroclinic instability.
Is the following structure stable to perturbations?

* We consider a fluid that is , i.e. there is no reversal of the barotropic
vorticity gradient (Rayleigh criterion, see #GFD3.3e), a parcel of fluid is not going to take off.
* The fluid is also , i.e. we do not have vertical gravity instability (cold air is at

the bottom and warm air is at the top).

* Density contours are tilted, so that (potentially) cold air remains in the down/north region,
while potentially warm air is up and south. In a rotating system, we can imagine a steady basic
state with inclined density contours (we need rotation to balance the pressure gradient forces).

Displacement A-C: A parcel of fluid A is displaced vertically into position C. As it moves into
this lighter layer, the parcel will be heavier than its surroundings and it is going to drop back down.
This is static

Displacement A-B: A parcel of fluid A is displaced northwards into position B, along a slope. It
moves into denser air and it is lighter than its surroundings. It can thus keep on going up and north.
This a potential /baroclinic instability called Sloping convection. The energy stored in the
density structure is released.

———— density increasing

low density
high temperature

density decreasing

>-|-NG-- .

high density
low temperature

3.4.c) Optimal scales for growth

= At what kind of scales does this happen? One of the things that is important to understand
is that the process of baroclinic instability depends on some sort of communication between different
levels, and there are certain scales on which that happens.

= Let’s go back to the definition of the quasi-geostrophic potential vorticity equation (f-plane
Boussinesq, see #GFD2.3i) and do a basic scale analysis:

* The relative vorticity (V?1) is of the order of ~/L?, with L the typical length scale

at which we have vorticity gradients. f2‘1’ U

. . . -~ _
The vortex stretching term is of the order of N2E2 LR2

% This means that these two terms are of comparable magnitude when L is comparable to Lz.
On length scales comparable to the Rossby radius, both of these terms will be important and this is
what we need to amplify perturbations:

» if L > Lp, the relative vorticity term will be small and vertical coupling will dominate. There
will not be much difference between the top and bottom layers. At these scales, the fluid will
essentially be barotropic.

» if L < Lg, then the relative vorticity will dominate and there will not be any coupling
between the layers. The fluid would behave just like uncoupled/independent layers.

" , there is some interplay between these
two terms and this will allow
(horizontal variations of density or vertical shear of the wind).
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= If we are right that the Rossby radius scale is the scale on which perturbations can grow,
then we should see these scales naturally in a geophysical fluid, just like Darwinian selection. We
observe the scales that amplify. If the mechanism of amplification depends on it being a certain scale
then this is the scale that should be seen on weather maps or diagnostics of ocean variability.

% This is the scale we indeed observe: when looking at weather maps (see #GFDintro), we see
cyclones and anticyclones. Altimetric sea surface height show ocean eddies - all on the Rossby radius

scales (LR = A}—H)

3.4.d) Physical mechanism

= How does it work? Here is a schematic to explain the physical mechanism.

1) Consider a two-layered shear flow in thermal
wind balance. There are two layers with a slope between
them. In the upper layer, the current is flowing eastwards,
while in the lower layer, it is flowing westwards. The slope
means that the layer thickness varies from north to south
and accordingly the potential vorticity for the upper layer

increases towards the north. In the lower layer, it is the
other way around.

e

2) We introduce a positive potential vorticity
perturbation (PV+) into the top layer with an associated
cyclonic flow that diverts the upper-layer eastward jet.

3) Positive vorticity is associated with positive
layer thickness that will squeeze the layer below and drive
a circulation in the same way. In the lower layer, west of
the upper-layer perturbation, this circulation will advect
PV- southward, and east of the upper-layer perturbation,
it will advect PV+ northwards creating a perturbation
dipole in the lower layer. This will also divert the lower-
layer westward jet.

< @5‘

&
L
e"'\/’

4) In the center of the dipole, there is a southward component in the lower-layer flow, which
in turn will impact the upper layer dynamics. This induces southward advection of more positive
potential vorticity in the layer above, amplifying the original perturbation, which will grow.

% If there is the right phase relation between perturbations, they can mutually amplify and
grow. In this configuration, there is a slope of the dynamical perturbation towards the west with
height and which is consistent with the extraction of energy from the basic state sloping density
surfaces to produce a circulation anomaly which can grow exponentially.

% At the same time, due to the upper-level potential vorticity gradient and the gradient of f,
the entire structure propagates westwards (relative to the mean flow) as a Rossby wave.
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3.4.e) Modal solutions

= Here is an overview of the theoretical framework in order to analyze under which
conditions baroclinic instability is possible.

% Here is a reduced version of the linear perturbation PV equation, in which ¢’ is a
perturbation potential vorticity and Q is the potential vorticity associated with the background state.
¢  .9¢  ,0Q _

ot oz oy

= We seek wave-like solutions in x and the amplitude coefficients as a function of y (as in
#GFD3.3d) and also of z because of the presence of a vertical component in the variations of the
background flow, 9’ = 1,'5(3;, z)ei(lx_“’t) . We substitute this solution into the linear vorticity equation:

U - )& +3fi215 — %)+ Q=0
vl 9z N2 78 ye

With the boundary conditions (equivalent to w = 0) at top and bottom: (U — 6)72’;: - U;ﬂf’ =0

0

% This is the equivalent of our Rayleigh equation in the barotropic case (see #GFD3.3d) but
this equation contains both horizontal and vertical derivatives.

3.4.f) Conditions for growth

= In order to analyze the conditions for growth, as in #GFD3.3e, we multiply the equation by
the of 1 and integrate the equation across the whole domain, i.e. in the north-
south direction (from 0 to L) and also in height (from 0 to H). It leads to:

L H ~ _ L H Q -
f f 0, + f2 /N1 + 21 Pdzdy — f [ D iz 4
o Jo 0 o U—c

~ H
f3/N?U. [
T o—e | (#T0

The first LHS term is positive definite and real. Therefore, if there is anything in
this integral, it must be in the second term.

= We analyze this term for the possibility of it having an imaginary part for the phase speed.
To get rid of the imaginary part in the denominator, we multiply top and bottom by (& — ¢)*, and
isolate the imaginary part:

i H Qy .
- %y _102dr +
/[; f T — o V!

If c; # 0 then the integral must be zero. Instead of just having one criterion, the Rayleigh
criterion (see #GFD3.3e), we need to think about all the circumstances in which this integral could be
zero:

;2N ]

du =
U —c? y=0

Disregarding the second term (no vertical shear of the background flow, U, = 0), there is
the same condition as for the barotropic case, i.e. the basic state potential vorticity gradient
(Qy) could change sign somewhere in the domain.
Disregarding the first term (no horizontal gradient of background PV, @,, = 0), the vertical
shear (U;) has to have the same sign at the top (z = H) and bottom (z = 0).

Then there is an interplay between the two terms. If these two terms have the opposite sign, it means:
The gradient of potential vorticity (¢,) has to have the opposite sign to the vertical shear

(U,) at the top level (z = H), or
Qy has the same sign as a vertical shear (U,) at the bottom level (z = 0).

= There are 4 possibilities, called the Charney-Stern-Pedlosky criteria. These are necessary
conditions but not sufficient conditions: if at least one of these four criteria is satisfied then we might
have an instability. If this the case, then waves can grow either in the interior of the fluid if we have a
PV extremum for instance or on the boundaries if we have temperature gradients on the boundaries.
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3.4.g) The Eady problem

The analytical solution can be derived for a simple configuration. It is the Eady problem, in

which: * The motion is on an f-plane (§ = 0).

* The fluid is uniformly stratified (N2 is constant).

* The basic state has uniform shear: U(z) = Uz/H.
* The motion is contained between two rigid, flat horizontal surfaces.

%, Constant vertical shear implies that the basic state PV is zero (Q = 0), which makes the Eady
problem a special case that can be solved analytically. Solutions have modes that grow on the

boundaries.

The non-dimensionalized growth rate as a
function of the zonal and meridional wavenumbers
(non-dimensionalized by the Rosshy radius: figure on
the right) shows stable conditions for short-waves
and for any given zonal wavenumber the most
unstable wavenumber is that with the gravest
meridional scale. This figure also highlights the scale
of the maximum exponential growth, close to the
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= The maximum growth rate is

031U
Sl

= Wavenumber and wavelength at which the
instability is the greatest are:

i 1.6 1 2n  2m L
M Ly m ek, 16°F
= The structures of these modes for the most
unstable Eady mode are tilted with height towards
the west.
More details can be found in Vallis (2017)

3.4.h) What we learn from the Eady problem

* The maximum growth rate is 0.31U/Lg and there is a length scale associated with the
maximum instability, close to the Rossby radius scale (a factor of 3.9).

* There is a short-wave cutoff — short-waves are not unstable.

* The circulation (meridional current, stream-function) must slope westwards with height in
westerly shear to extract energy from the basic state.

% In the Eady problem, the instability relies on an interaction between waves at the upper and
lower boundaries. If either boundary is removed, the instability dies.
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% To get a qualitative sense of the nature of the instability, we choose some typical
parameters:

= For the ocean, we choose:

H~1km, U~0.1m.s71, N~1072s71
We then obtain:
NH 1072 x 1000

Rossby radius Ly = T O 100km

Instability scales ~3.9 x Ly = 400km
U 03x10

Growth rate ~0.3 T I 0.026 day~! (Period ~ 40 days)
R

= For the atmosphere:
H~10km, U~10m.s™t, N~10"2%s71
We then obtain:

_ NH 1072 x 10*
Rossby radius Ly = N2 ST a—— 1000km

Instability scales ~3.9 x Ly = 4000km

U 03x10 ~ _
Growth rate ~0.3 T 0.26 day™! (Period = 4 days)
R

% The time scale is a few days for a weather system

3.4.i) Heat transport in a baroclinic system

= Baroclinic instabilities are important for the climatic system.

1) Consider how radiative forcing heats the equatorial region and cools at the poles. There is
a zonal jet flowing horizontally between the two regions, consistent with thermal wind balance.

2) If this radiative forcing persists, the jet will get stronger as the equator gets warmer and the
pole will get cooler.

3) At some point, the jet will break out into eddies. The origin of the growth is the unstable
profile either in the horizontal or in the vertical direction (or both) - baroclinically unstable. The
perturbations that grow will have this shape:
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» A low-pressure anomaly in the upper layer with the associated pressure surface dipping
downwards. In the lower layer, there is a dipole of high and low-pressure, slightly shifted.

. . .- . ad
» The distance/thickness between surface pressure level is indicative of the temperature (%):

- East of the upper level Low, they are far apart: the air is warm.
- West of the upper level Low, they are close together: the air is cold.
= The perturbation flow advects the warm air towards the north, while cold air is advected to
the south. Such a weather system transports warm air upward and poleward and cold air downward
and equatorward.

= On the one hand, this configuration is the configuration that perturbations need to exist
and grow. A configuration that has this westward slope with height leads to the extraction of energy
from the background state.

= On the other hand, this configuration is the configuration required to transfer heat to the
north and thus reduce the temperature gradient hetween the equator and the pole, releasing the
instability, flattening the isentropic slopes that are continually built up by the radiative forcing, and
dissipating the background jet. This is an example of scale interaction (see #GFD5).

3.4.j) Baroclinic instability: summary

1) There is clear evidence of a preferred scale for turbulent motion in the ocean and the
atmosphere.

2) Simple scaling arguments and more sophisticated stability analyses show that there is a
preferred scale for growth to occur.

3) |If this growth depends on extracting energy from sloping density surfaces (or equivalently
vertical wind shear or horizontal temperature gradients) then there must be an interplay
between vortex stretching and relative vorticity terms in the conservation of potential
vorticity.

4) This naturally select structures around the Rossby radius scale.

5) These structures can grow exponentially provided certain criteria are met, notably if there
are extrema (maxima and minima) in the potential vorticity of the basic state.
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