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In this chapter, we will tackle quasi-
geostrophic theory. On the weather map
on the right, surface pressure lines (isobars)
are shown with black lines. If the wind
follows the isobars exactly, it is in
geostrophic balance. The closer together
the isobars, the stronger the wind. But in
this equilibrium, this pattern is not going to
be transported/displaced. The wind
circulation will remain as it is and never
change. On the one hand, geostrophic
balance is a very good way to describe the
flow, but on the other hand to make
weather forecasts (predict changes in the
flow) we need to include more terms in our equation system than only geostrophic balance. In this
chapter, we will consider the closest thing we can get to geostrophic balance, i.e small departures
from geostrophic balance. It is called quasi-geostrophic because it is almost geostrophic but not quite.

1) We start with an example of steady departures from geostrophy, with a flow that does not
develop in time but in which we can describe the effects of non-linearities and drag (see #GFD2.1).

2) Then, we will discuss ageostrophic flow and the importance of the divergent part of the
flow. We will introduce a new formulation of the conservation of the potential vorticity. We will start
with the assumption that we are on an f-plane (see #GFD2.2) and then we will generalize to the
situation where the planet has some curvature (see #GFD2.3).

3) We will finish by studying various applications of quasi-geostrophic theory (see #GFD2.4).

Quasi-geostrophic theory is very important because it was the basis of the first weather
forecasts. It was the equation set used to predict the weather. The picture below refers to something
called Richardson's dream. Lewis Fry Richardson (1881-1953) was one of the founders of the science
of meteorology. Before the computer era, he had the idea that we could analyze the equations of
motion to predict the weather. But they are so difficult to solve that you need lots of calculations. He
dreamed about an amphitheater full of
people making calculations with their
pencil, paper, and their log tables, passing
information to one another. He was
ahead of his time, effectively imagining a
massively parallel multi-core cluster. He
anticipated the idea that we would solve
the equations by some sort of multitude
of calculations. And it is what we actually
do nowadays, i.e. making weather
predictions by discretizing (in space and
time) and solving partial differential
equations. And, of course, we do this on
machines capable of performing very
many calculations per second (super-
calculators).

1.3.e) Conservation laws and potential quantities 37



Small departure from geostrophy

Sub-geostrophic flow

Super-geostrophic flow

GFD2.1: Steady departures from Geostrophy

2.1.a) Gradient wind balance

= We start by considering small steady departures from geostrophy. Let’s recall the zonal
shallow water momentum equation, with the flow tendency, the advection terms, the Coriolis force,
and the pressure gradient force expressed through the gradient of the layer thickness (see #GFD1.2ef):

ou  Ou au[ oh
—fv=—g

% The two terms on the right are geostrophic balance (outlined in green), in which pressure
gradient force balances the Coriolis force.

= Now, let’s consider time-independent (steady) flow around a circle. In a simple way, the
nonlinear terms represent the local centrifugal force associated with this circular motion. This is
gradient wind balance (without the Coriolis force it is “cyclostrophic” balance).

* On the schematic on the right, the flow is going around a
low-pressure system, a perfect cyclonic motion. There is centrifugal

force associated with this circular motion = something extra
compared to geostrophy.

v <y

% The pressure force (ﬁ~g %) pushes the flow towards the P

center of the low pressure. It is balanced partly by the Coriolis force Low pressure
(5), which yields an anti-clockwise flow. Since the flow is spinning
around, there is also a (C'¢) associated with the
curvature of the flow. Notably, both Coriolis and centrifugal forces
are fictitious, associated with the choice of reference frame.

% In this example, we consider the balance between these
two fictitious forces and the real pressure gradient force. It follows:

V2 dh
f’U+? =g$ =f’Ug

Coriolis term (fv)+centrifugal () is equal to the pressure gradient (g %). The latter is positive

for a cyclone because the pressure is low in the center and increases outwards along the radius. If the
flow were in geostrophic balance, the pressure gradient would be balanced by fv,,.

Since these two forces sum-up (af+ ) to compensate for the pressure gradient force (F)
and keep the flow parallel to the isobars, the Coriolis force does not need to be as strong as if it were
in geostrophic balance. This means that the flow does not have to be as fast as the geostrophic velocity
v,. As aresult, vis slightly weaker than v,. We can just eliminate the pressure gradient in the equation
above and rewrite the equation in terms of the difference between v and v,,. It follows:

v(1+%)=vg

% With fir positive, 1 + fir > 1, confirms that v is slightly

weaker than its geostrophic counterpart v ;.

* In the case of a high-pressure system (an anticyclone), the High pressure
v negative

pressure is decreasing outwards and the flow is going the other way
around — clockwise. There is now a balance between the sum of the
centrifugal force and the pressure gradient force ( +ﬁ) and the
Coriolis force (E). As a consequence, the Coriolis force needs to be
stronger as if it were in geostrophic balance. So, v is slightly stronger
than if the flow were geostrophic (v > v,).

38 GFD2.1: Steady departures from Geostrophy
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* We can group these two cases: |’U| = L, with R, the Rossby number (see #GFD1.2a).
1 + R,
% If the flow is close to geostrophic, v ~ v, because Ry is small.
22
r P dh
= The full solution to this quadratic equation is: ¥ = —f— S f— +rg—

2 4 dr

For a cyclone, as the pressure gradient is positive (pressure is increasing outwards),
everything under the square root is positive and we can have real solutions. There is no limit
to the strength of the pressure gradient.

— In the case of an anticyclone, the pressure gradient is negative. As a consequence, if
the pressure gradient gets too strong, it leads to a square root of a negative quantity. In that
case, the equation does not have real solutions. So, in the case of an anticyclone, there is a
limit in the strength of the pressure gradient beyond which the equation does not have

‘ solutions: | dh < f27'

dr|~ 4g

There is a limit on the strength of the pressure gradient associated with anticyclones
compared to cyclones. This explains the asymmetry between high- and low-pressure systems
we observed in #GFD.intro. On the previous weather map, there is a very intense cyclone
south of Greenland, associated with very strong pressure gradients, while the anticyclone off
the coast of Spain resembles a flat pattern and is associated with rather weak pressure
gradients. This asymmetry is the result of a steady ageostrophic term, called gradient wind
balance.

% In the full solution, there is a +, which means that in theory, the flow can go the wrong way
around a cyclone. So, it is mathematically possible to find an equilibrium in which there is a clockwise
flow around a low-pressure system, i.e. a solution for which pressure gradient and Coriolis forces are
both directed towards the center of the pressure system, balanced by the centrifugal force.

In reality, it is not really possible. We never observe it, except maybe on very small scales
maybe. Because you have to consider how the equilibrium develops. Starting from rest, a particle will
accelerate towards low-pressure centers, while the Coriolis effect will deviate its trajectory to its right.
The particle will end-up be turning around the low pressure anti-clockwise. So, the natural way in which
these systems come into being favors the normal solutions rather than strange anomalous solutions.

2.1.a) Gradient wind balance 39



Sub-geostrophic flow

Ekman convergence

2.1.b) Boundary friction

= Friction is another way to modify geostrophy in a steady flow, in which we add some drag
to the system.

* Consider a cyclone in the Atmosphere. The pressure gradient force (F) is directed toward

the center (see illustration below). In addition to the Coriolis force (EB), we add a () that
points in the opposite direction to the flow, so this drag and Coriolis forces balance the pressure
gradient force. For that to be possible, the flow has to converge into the cyclone. This is sub-
geostrophic flow. If the wind converges towards the center of a cyclone, the mass will be gradually
accumulated and the cyclone will decay as the low pressure fills at the surface.

But before this happens, the low-level flow (which experiences this drag and converges) will
naturally give rise to upward motion by conservation of mass. We observe ascent in low-
pressure/cyclone centers. This explains why a depression is always associated with cloudy weather
(upward motion=condensation=clouds). Conversely, it is sunny in an anticyclone, associated with
super-geostrophic (descending) flow. It is the opposite effect, the wind is blowing outwards and the
flow experiences downward motion (=evaporation=clear skies).

Co

Sub-geostrophic
ascent P

Co

Ekman pumping

v

T

* Let’s focus on the Ocean and consider exactly the same diagram.
= Instead of being driven by a pressure gradient force, the flow is driven by surface wind-
stress (T). It is the stress which is acting on the upper surface layer of water.
= The same surface ocean current vector v, directed at 45° from the wind forcing.
= |t is being pulled back by friction with the water below, i.e. the drag (V).

= The Coriolis force (Ef) is as usual perpendicular to the flow.

> We have the same balance but this is now Ekman convergence: wind-stress driving the flow,
balanced by the Coriolis force and friction. It will be convergent and that will lead to downward motion
in order to conserve mass. This is Ekman pumping. As each layer exerts a stress on the layer below,
the movement of the upper layer will produce a stress on the next layer, creating the Ekman spiral.

In the case of the atmosphere, it is the slowing down of a flow that has already been
established, while in the case of the ocean this is how the flow is forced.

= But now we need to move away from these anecdotal cases and put together a system with
advection and time dependence that is almost, but not quite geostrophic.

We do this essentially by separating the flow into a geostrophically balanced, nondivergent
part, and the ageostrophic plus the divergent parts as a small perturbation. This small perturbation
allows prognostic equations that lead to the evolution of the flow.

40 GFD2.1: Steady departures from Geostrophy



Linear ageostrophy

GFD2.2: Quasi-Geostrophic Theory I — the f-plane

2.2.a) Ageostrophic perturbations

= The goal is to build a theory that is close to geostrophy but not quite geostrophic.

% We separate the flow in its geostrophic part and
ageostrophic part, and we assume that the ageostrophic part is a
small perturbation. We start with the shallow water momentum
equations in a single layer (see #GFD1.2f):

Du Oh
D 10 T95, =0
Dv oh

Dt +fu+gay — 11,

D a D ad ad 0
With — the substantial derivative operator (—+advection): § — — 4+ u—+v—
bt at Dt ot ‘oz dy
= What would happen if we just assume the flow is geostrophic (v,) and we substituted it
into the momentum equations?

g oh _goh

U, =—=—, UV, = =—
7 foy ¥ fox
% We put it into the definition of the substantial derivative, using the geostrophic flow for

the advection terms: 2 . .Dg o . o 4 0
Dt Dt ot Yoz oy

¥ If we also put the geostrophic velocity (v,) into the Coriolis part
instead of using the full flow (v), this gives:

oh
Dtug fvg-l-ga =0

% The two terms on the right cancel each other and the geostrophic
flow is non-divergent. This leads to a null tendency, which was expected as
geostrophy is a balance. So, we went one step too far.

= Instead, we make sure that the equation remains linear in terms of the ageostrophic part
of the flow (v, = v —v,), i.e. vy, contribution in the nonlinear terms (squared terms) will be small
and we are going to neglected them, making the equations easier to solve. So, the full flow is used in
the linear Coriolis terms (v) and we advect with the geostrophic flow (v,). This is consistent with the
idea that the ageostrophic part of the flow is small.

2.2.b) Quasi-geostrophic f-plane vorticity equation

= Using geostrophic flow in the non-linear and tendency terms, and keeping the full flow in
the Coriolis terms vields quasi-geostrophic momentum equations:

D,

—u, — fv+g—=0 (1

gt oS gg-’fb (1) f-plane
on f=cst

d
% As in #GFD1.3b, the vorticity equation is derived by cross differentiation: E (2) - @ (D

= This process eliminates pressure gradient terms, and we get:

Oug =~ Ovg ou Ov df
at«fg—l—uga 55,—|—'vg6 £g+£g( +6 )—I—f( 6)4—1)@—0

2.2.a) Ageostrophic perturbations 41



f-plane & equation

Linearization of h

f-plane continuity equation

= We obtain an equation for the development of the geostrophic vorticity. Because we have
. d , .
assumed that we are on an f-plane (f=cst, i.e. é = 0), h is a stream function for u, and v, and the

divergence of the geostrophic flow (V.v, = 0 on an f-plane) remains zero. The equation simplifies:

D
‘B%(f +§g) = _fv-V

% The geostrophic tendency of the absolute geostrophic vorticity is given by the divergence
of the ageostrophic flow.

%, % If f varies with latitude, there is a divergent part to the geostrophic flow (see #GFD2.3).

2.2.c) Continuity equation

Here is the continuity equation in the form of the flux of layer thickness h (see #GFD1.2d):

oh 0 0
— + —(uh) + —(vh) =0
i CO R By( )
It can also be written as the substantial derivative of the layer thickness (see #GFD1.3c):
Dh
— 4+ hV.v =
Dt +hV.v=0

% As for the momentum equations (see #GFD2.2b), we replace the substantial derivative
(D/Dt) by the geostrophic operator (D, /Dt), and expand it. The continuity equation is then written:
oh
- +Vg.Vh+hV.v =0
ot
% hV.v is not a linear term, because h depends on v. So,
for consistency :

h=H+0dh, O0h<H

% We can now the ageostrophic flow AV.v by assuming (for this term only) it is
approximated by H (a constant) times the divergence of the ageostrophic flow ( HV.v ). This is the
equivalent to the approximation: vgh ~ vg5h +vH

oh
We obtain the following continuity equation: — 4 vg_Vh +HV.v=0

at
= It can be written as the geostrophic substantial derivative of oh:
O Sh4 vy Voh+ HV.v =0 or 225h4 HV.v =0
e . V= or —— V=
g’ TV Vot AV Dt

% To impose some linearity in the ageostrophic contributions, we had to make a strong
approximation to the mean stratification: the mean stratification, represented by the layer thickness
(H), cannot vary in the horizontal.

f

D
= Finally, we can rewrite the continuity equation as: T F;&h =—fV.v

42 GFD2.2: Quasi-Geostrophic Theory | —the f-plane



f-plane QG PV conservation

2.2.d) Quasi-geostrophic potential vorticity

= As in #GFD1.3c, we combine the vorticity (see #GFD2.2b) and the continuity (see #GFD2.2d)

equations and eliminate the divergence, as follows:

D, oh
Dt (fH) i(f‘f‘fg)

D oh
“, We obtai tion principle: —2 ¢ f+ &, — f— » =
e obtain a conservation principle + {f &g f } 0

H

= This is the conservation law for f-plane quasi-geostrophic potential vorticity:

gt g — 0 f -+ gg fa—h- q is conserved following the motion

= It is not quite the same as the Ertel potential vorticity (see
#GFD1.3c) because there is a linearization of the stratification. It does not
even have the same units as the potential vorticity, but the two quantities
can be related:

= S(_(f-Hf)(H-:Sh)=(f;€)(Hf6h)
- (50 Gma) = G -7)
S~ G-

h A2

% As H is constant, with the linearization of the stratification, we
obtain the conservation of the following quantity:

q=f+E- -6

= Then using scaling arguments, i.e. the Rossby number is small, the
term involving relative vorticity is small compared to f.

o< || 7L <<1=>f>>£, E=§
% We can thus neglect the term on the right and recover the quasi-
geostrophic potential vorticity formulation.

In the absence of
forcing or dissipation

= So, this linearization of the layer thickness is a surprising consequence of our insistence
that the flow remains close to geostrophic. In a vertically continuous framework it means that the

stratification is uniform in the horizontal (see #GFD2.2b).

2.2.d) Quasi-geostrophic potential vorticity

43



Adimensionalization

Relation between scalings

2.3.a) Adding curvature to the Earth

#GFD2.2 was pretty straightforward because we assumed that f was constant (f-plane). But
many important dynamical phenomena depend on the variation of f with latitude (Rossby waves, for
example, see #GFD3).

% On an f-plane, the geostrophic flow is strictly non-divergent, while on a planet with some
curvature, the geostrophic stream function that contains f is not a proper stream function. It has
departures associated with the divergent part of the geostrophic flow. So, allowing f to vary will
complicate the theory as we have to deal with the divergent part of the geostrophic flow as well as the
ageostrophic flow.

= To proceed, we will derive the quasi-geostrophic equation set more formally than in
#GFD2.2. We will do a formal expansion of these perturbations about a small parameter. We will
naturally choose the Rossby number (see #GFD1.2a) for this small parameter.

2.3.b) Derivation of the quasi-geostrophic shallow-water momentum equations

* We recall the full 1-layer shallow water (see #GFD1.2f) momentum and continuity (in its
divergence form, see #GFD1.3¢c, #GFD2.2c) equations using a vector notation:

Zt +v.Vv+ fkav+gVh =0

oh
a-l—vVh—l—th 0

* We now non-dimensionalize these equations.
- We use typical scaling values of length (L), speed (U), and time (T), to obtain non-
dimensional variables noted with primes:

¢ =z/L, v =u/U, t'=t/T

- The layer thickness h can be written as h = H + §h. We non-dimensionalize the variations
of the layer thickness (6h) by Ah a quantity typical of variations in the layer thickness (Ah,
% not H), as follows: i’ = 6h/Ah

% We substitute these non-dimensional variables into the shallow water equations, leading to:

U v’ U2 L . Ah_

f@ + —v.Vv' + Ufk,\v +QTV?? =0 (1)
Ahon' U U p ,
Taw T Ah V' + L(H—I—Ahn )WVvi =0 (2)

= We obtain (messy) equations with scaling values in front of each term, in which the non-
dimensional terms with prime (v’ and 1) are of order 1.

* So far, we have not made any assumptions or approximations. We now introduce the quasi-
geostrophic assumption by requiring that the relationship between the basic scalings (L, U, T, and
Ah) conforms to geostrophic balance, i.e. fw ~ gVh. In terms of typical scalings (with f; the value of
f at a reference latitude), it follows that:

Ah
Ufor~ 9

%, We obtain an expression relating the value Ah to the other scaling parameters:

UfoL
p (3)

Ah =

44 GFD2.3: Quasi-Geostrophic Theory Il — Expansion in small Rossby number



Burger number

* If we now define the Rosshy number (see #GFD1.2a) and the temporal Rossby number and
acknowledge that they will be small in the quasi-geostrophic approximation (see #GFD2.3d and
#GFD2.3f). Note that if U = L /T, these two parameters are the same.

U 1
- (@) = (5)
fOL foT
= For simplicity, we now remove the primes in the equations and rewrite them using our new
scaling parameters (sand &7).

% For the momentum equation, we divide (1) by f,U, replace Ah with (3), and then use (4)
and (5). This leads to:

€

ov g
er— +ev.Vv+ —k v+ V=0
ot fo
% The last two terms constitute a non-dimensional form of geostrophic balance. The
advection and development terms have epsilon in front (v, u, and 7 are of order 1).

% It is worth mentioning that we only made the hypothesis that the scales of the motion
conform to geostrophic balance. We just rewrote the equations using the £and & scaling parameters,
we but have not yet assumed that these parameters are small. This will be done in #GFD2.3f.

2.3.c) Quasi-geostrophic continuity equation

= For the continuity equation, we multiply (2) by L /UH, replace Ah by (3), and then use (4)
and (5). It follows:

L’fg\ on , (L*f
€r ( oH ) E—I—e( oH ) (vVn+nV.wv)+Vv=0

% The non-dimensional constant that appears in brackets is the inverse of the Burger
number (Bu~?, see #GFD1.2a).
- Buof order 1 means that Coriolis term and gravity/buoyancy effects are comparable or
that vorticity advection and vortex stretching are equally important (see #GFD5.5a).

- Bu of order 1 means that we are dealing with typical synoptic systems, which can be
amenable to quasi-geostrophic analysis.

- It is also associated with the length scale (L), such that Bu™! = LZ/Lﬁ. (Lg is the Rossby
Radius, see #GFD1.2a).

% For simplicity, we call it F in the following.

= We use F in the continuity equation and it writes:

eTth—n +eF (v.Vn+nV.v)+V.v=0

Again, we have not made any further approximations than the scales of movement conform
to geostrophic balance (1%).

% But we can already see from these two equations that to zero-order in our Rossby number
parameters, the flow is geostrophic and non-divergent and that first-order terms concern advection
divergence and time development.

2.3.c) Quasi-geostrophic continuity equation 45



B-plane

2.3.d) The assumptions of quasi-geostrophic theory

= Before doing a formal expansion in the Rossby number (see #GFD2.3f), we will set out our
assumptions one by one:

08
foL

* Assumption 1: the Rossby number is small, i.e. close to geostrophy: € K 1 withe =

* Assumption 2: the temporal Rossby number is also small. We consider that €7 = €

% This means that scaling for velocity (U) is consistent with our scaling for length (L) and time
(T), i.e. the velocity is just the flow velocity (as opposed to wave velocity which could go much faster).
This results in filtering the very fast surface gravity waves (ex: tides).

* Assumption 3: Buoyancy/gravity-stratification effects are as important as the Coriolis effect,
i.e. Bu is of order 1, and length scale (L) is close to the Rossby radius. This means that the coefficient
F in the momentum equation (see #GFD2.3c) is of order 1.

* A consequence of assumption 3 and assumption 1is that departures (6h) from standard layer
thickness (H) are small.

% This is the linearization of the continuity equation and of the quasi-geostrophic potential
vorticity. NB: In a continuously stratified case, this is equivalent to saying that Brunt Vaisala frequency
squared (N?) varies in the vertical but not in the horizontal.

L
* Assumption 4: Scales of motion are small compared to the radius of the Earth: — < 1
Tﬁ

L
% In fact, we assume that — = € is the same ¢ as the Rossby number. We keep only one
small parameter &. e

% NB: Assumptions 3 (about the stratification) and 4 (about the scale compared to the size of
the planet) have nothing to do with geostrophy. They are not the result of our intent to derive a system
almost but not quite geostrophic. But they are necessary for our expansion to be self-consistent.

2.3.e) The beta effect

= Assumption 4 (length scales of the flow are small compared to 7,) indicates that the
variation in f is non-zero but small.

= A ] pansion of f = 2()sin ¢ about a reference latitude (¢b,) gives:
df il T i y'L
E — =l =k =100 2Q) o =
ey oVl 2 T kel el o
. . . o Sy 2cosdo Ly
% It can be written non-dimensionally (y = y'L, see #GFD2.3a): = 1+ 20sindo rey +
=1+ cotgy—y' + -

Te

= At first order, with 8" = cot¢, and LR g, it follows that: i ep'y’
re  fol fo
% It represents the variation with latitude of the Coriolis parameter f, with a small parameter
g, in front of the § term. We introduced the /#plane, i.e. the function for fin x — y space is linear and
describes a plane.
= We cannot get too close to the equator where cotgpy — oo .
It is thus an extra-tropical beta approximation.
= |f f = f,, itis an f-plane (as in #GFD2.2).
= Fplane is only in functional space, not in physical space.

= In the following, we are going to eliminate the prime in the notation (as in #6FD2.3c).

46 GFD2.3: Quasi-Geostrophic Theory Il — Expansion in small Rossby number



Zero-order

Continuity

2.3.f) The expansion

= Let's do the expansion. Using assumption in #GFD2.3d, we rewrite the momentum
(#GFD2.3b) and continuity (#GFD2.3c) equations as /fplane (#GFD2.3e) non-dimensional equations,
in which some terms are multiplied by € and some terms are not:

eaa—: +ev.Vv+ (1+eBy)kav+Vn =0

GF% +eF(v.Vn+nV.v)+V.v=0

% We expand the 3 variables (u, v and 7, the departure of the layer thickness from the
standard value) in increasing powers of £ (a zero-order part (s°)+ &' x a first-order part + & x a second-

order part, etc...): ¥ — v levy 62V2 .
n="no -i-fn]_ +62ﬂ2 + ...

% We then substitute them into the equations. We will sort the terms in increasing order of
epsilon. We will focus here on zero-order terms and then on first-order terms (see #GFD2.3g).

For example, vy is a zero-order term in the last term of the continuity equation, while it is of

first-order in the second term of the momentum equation. Likewise, &v; is a first-order term in the
last term of the continuity equation, while it is of second-order in the second term of the momentum

equation.
Zero-order: All the terms without any gin front. At zero-order, the momentum
equation yields geostrophic balance, while the continuity equation informs us that the
flow is non-divergent:

kavo+ V=0 (1) V.vg=0 (2)

% At zero-order, there is no development. The geostrophic non-divergent flow
can only change with time if we include some first order (divergent) terms. The
continuity equation is the equivalent of the momentum equations as curl(1) gives (2).

1jo acts as a stream function for the zero order (non-divergent) flow (1, vy):
= Ono . Ono
|| emm— O —_ ——
oz’ Ay
% It does not represent the geostrophic flow, it represents the part of the geostrophic flow
you would have if f were constant.

Vo

2.3.g) First order in &

= First-order is what is left over when you select terms that have just & in front of them (no
second-order or higher-order terms). It follows that:

5 X )

% +vo.Vvg + kv + Bykavo + Vi =0 (1)
d

F% + F(vo. Vo +1m0V.vo) + V.ovi =0 (2)

= In the continuity equation (2), the second term is zero because the zero-order flow (vg) is
perpendicular to the gradient of the stream function (V7,). And vg is non-divergent, so:

T

Tl .

The rate of change of the zero-order layer

thickness comes from the divergence of the first order flow.

Vi
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Vorticity

F-plane QG PV conservation

Jacobian notation

= We form the first-order vorticity equation by taking the curl of the momentum equations
(1) ;—x (y — equation) — % (x — equation), as in #GFD1.3b and #GFD2.2b. It provides an equation

for the vorticity of the flow (£, curl of the velocity):

0
% + & V.vo +v0.VE& + V.vi + ByV.vo + Bug = 0

% The second and fifth terms are zero because the zero-order flow (vy) is non-divergent.

= We then combine the vorticity equation with the continuity equation to get rid of the first-
order divergence (V. v;). This provides a conservation principle:

o _ _ om0
ot +vo.V& + Bvg = —V.vy = ot

a
% Then taking into consideration that a(ﬁy) =0, vo.V(By)=pPvy, vo.Vp=0
and using % + v,V as the substantial derivative, we can factorize the equation, so that:

9
ot

(By + &) +vo.V(By+ &) =F [% + Vo-vﬂo]

In the absence of
%, It yields the conservation (following the flow) of the (non-dimentionalized) forcing or dissipation

quasi-geostrophic potential vorticity:

[% + Vo-V] [By + & — Fnol =0

2.3.h) Quasi-geostrophic potential vorticity on a f-plane

D —
D—t[ﬁ)""fo_F??o] =0

= If we now express the zero-order (non-divergent) flow (v;) in the advection terms in terms

of the stream function 1, so that vy = % and ug = — Z—T (see #GFD2.3f), the substantial derivative
of the potential quasi-geostrophic vorticity (q) is written:
Dg _dq _0q dnodq 0dnodq
—=—+v,.Vq=—+—F————
Dt Ot adt oOx dy 0dy dx

= Recalling that the vorticity is the Laplacian of the stream function (see #GFD1.3a), we can
write the prognostic equation in terms of one variable only, the stream function (774):
0 87’]0 0 37’]0 0

R— — — — o— — 2 —_— —
5 T oz 5y oy ow| PV VM~ Fno] =0

= This leads to an expression of conservation of (non-dimentionalized) quasi-geostrophic
potential vorticity g, which can be written like this:

0
&q-FJ(T]O,Q):O with q=ﬁy+V2ﬂ0—Fﬂo

%, Jis the Jacobian, i.e. a compact way of expressing advection, when you have a non-divergent
flow, in terms of the stream function and the quantity being advected.

= What we learned from this is that we have just one variable in this system. For the complete
shallow water equations, we had three variables (u, v, and h, see #GFD1.3d). For the quasi-geostrophic
theory, we can express everything in terms of 175: one equation - one variable. This is rather useful to
perform weather prediction.
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Dimentionalizatio

Fplane QG PV conservation

= This is all non-dimensional, so we now put the physical values back in (i.e. the opposite of
non-dimensionalizing the equations, see #GFD2.3b) and dimensionalize the equation. This leads to the
dimensional quasi-geostrophic potential vorticity: f
2 0
q=pPy+ V-

% i.e. fterm + relative vorticity + vortex stretching term.

= If we define the quasi-geostrophic stream function as: 1 = f—5h it follows that:
0
In the absence of

The conservation of forcing or dissipation

q=6y+V2¢—(fg

1
)w o =Byt -

gH
0
with the as before: e +J(¥,q) =0
ot
As fo remains constant, it can be included in the definitionof q. [ % Rossby radi
It will not change the conservation principle. e
2.3.i) Continuously stratified fluid
= Here, we provide the for more

realistic fluids, with continuous (horizontal and vertical) variations of density.

% Up until now (#GFD2.3a-h), we have worked with discrete shallow water layers, each of
which being homogeneous (constant density). The extension to continuous stratification requires that
we abandon this formulation and reintroduce a vertical coordinate (see m on the next pages).

= The vorticity remains the same:

Oq P

% 1t is the

= In a flow where the stratification varies with the vertical and in which also the Coriolis
parameter varies with latitude (f#-plane), the stream function is defined in terms of pressure and f,

h that:
such tha _ Po % Similarly, ¥ is the stream function for the

psfo non-divergent part of the geostrophic flow.

% The density varies in the vertical and horizontal, such that there is a reference value of
density and a perturbation, function of (x, y, z, t). The expansion around a small Rossby number and
the derivation of the full quasi-geostrophic equation set are very similar (detailed in the

-

e For the quite realistic anelastic case (see #GFD1.1c) which allows large variations of density
with height, accounting for the static compressibility of the atmosphere, the quasi-geostrophic
potential vorticity is: f )

2 fo oy
=By +V +——
qa="Py P 52 \ NP,

% It is the same as before: the Sy term, the relative vorticity, and the vortex stretching term.

The latter is more complicated and depends on vertical gradients of the stream function.

® This definition can be simplified in the case of the Boussinesq approximation in which the

reference density {po) is constant (independent of z, see #GFD1.1c). In this context, the density

variable between the vertical derivatives cancels. It follows that: f B’I,D
0

q—ﬂy+V2'¢/)+— (Fa)

= The result is once again a , which
is defined entirely in terms of a stream function, so one equation, one variable.
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Derivation of the PV equation in a continuous

y stratified fluid

1V) EXTENSION TOA CON‘I'WUOUSLYSTRATFFIED FI.U!D
(with non-B static comprossibility off

Three dimensional scalings for a compressible, baroclinic stratified fluid:
. UH L
oy=—L, wo=U z—-H, waT. tA.‘!7
p=ps(z) + plz,y. 5,t)
p = p.l2) + plz,y, 2.t)
Geostrophic scaling for pressure

o 128

50
p— foULp.

Hydrostatic scaling for density
.

= =1+edy

where

2
f= '*’L{' = cot

as belore.

No.

' uU? v LoV .H'L3 1 V'
— V.UV - A s / .
o L+vV L+u 7 +]U‘kv p(]+:Fn’)LbL‘rw

= =UfuVp'(1 = Fp)
(1o first order)
Divide by Ut drop primes

v v £ o i1
(a’cv‘V‘I-#zuaﬁ»(I-fdy)knv— (1 = eFp)Vp

N “- il

dp dp dw
a+v‘vaua+pV.v+ﬂE—|]

p.d'b; +p,¢!- V.9 +p¢}-LH d‘{,

“’ '[a“'} +p.(l+¢Fp')[L (Vv +ol',)] =0

L a3

X e =

U

B0 o s O ([ 1 8p, ot .,
d-m,+d'v.Vp +eFu' 5 + Hw' o 4[l+n‘p](v‘v . a:_) =0

Note that the expression in square brackets resembles N, and note that zis
dimensionless.

9 9ps

Fu
P 02

then the fourth term above becomes

(HS”) M
=
g

This is the non-Boussinesq term.
So dropping primes

.r(% wv,ww:‘;") o HTsn +(1+¢Fp) (V.v+%':') —v

of
v=vgtev+
w=1wp+ew + ..
P=potep+..
P=po+epr+ .

Momentum equation lo zero order
Geostrophic balance

kavp = -Vm
and

Vv =0

Continuity equation to zero order
HS?

B
wy + V.ovg + . P8
9 az

mmnm‘mw“nmmuumwmmuwm Al zero order,
wvertical motion can only be generated at the boundary.

Assume that the botiom vertical velocity
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wy =0+ ewy + ...

(remember, for the atmosphere:

(this is assumption (3): weak orography) lr.,.«-E: —"l:”f‘l-vsxlo‘m:mkm
Integrate upwards, this implies 0
= po w00
everywhere, 0 o
w=cuwy +.. )
So the vorticity equation is now
Momentum equation to first order
o o 2y €0+ vo V(B + 60) = Ty 4 20
ot vo.Vva + Kavy + Bykave + V1 — FpoVpo = 0 ?
Using
K.V 1 (this) — _ 29.
ps Oz,
: the right hand side can be written
A po Opo  8po Opo
°+5“VVo+vnV&.+Vv,+ﬂ|ern+ﬂvo— Ea-wz] =0 -li(pm)
w8z
‘Second and fifth terms by of the zero order flow, and the last Pt
torm can be rewritten using geostrophy of the 2ero order flow 10 give We can evaluate the right hand side using the ...
%E‘_u +vp. Vo + Vovy + Bvo + Fvo.Vpo =0
m =
Continuity equation to first order ﬁ-ﬂ
F% +Fvn-Vﬂn+(£)wu+V-Vl+%=° =0
s 0= 0,(1+eF(fy+...)
Note that the second and fourth terms have just appeard in the vorticity equation. S0 we
can ebminate them by combining the comtinuity and vorticty equations: """""’""‘W“
U o¢" HU o, UH
%+vn.v&+ﬁvn=—é‘v...vm—v.v. TaecFtat v'va'cn +uf—¢n R T et
a, Hs? B, . a2
L Lo 2
_Fﬂt ( g ) ™ (F(g+v.V0+wg)+w¥-0
Al this stage we note that for synoplic scales F ~ 0.1 so we neglect the first term on the
right hand side. This is because we have set At zero order we recover
f?L’ 2 wy =0
W_F
e =0,(z)(1 + eF0)
F(%+vu-?ln)+m—-0 and define
3L pagHl
- )\cm(W*'“w") = b (p. )P"
[ == ASIDE: So where does this come from 7
Do 8 Its needed Io ensure
g’ a8 _1dp _dp
¢ vp »p
S0 e
o= R ["*] e
Cy
Wy by o ke verbcl darvubve e chie by . o excharge duetios )
1 8( = [f:,‘!.'g (ﬂ-‘n)] integrafe this, gives
a0z P Dt |H%p, 0: \ N?

and we can use this o rewrite the vorticity equation as

% [ﬂr+&+{f,ii ”"")] =0

Now we have one last thing 1o do...
Hydrostatic equation
b=
P=ps+popfoUL
P = ps+ popeF
a
s Pops) = —pops
or

== {nw)

P Bs
Now, define

logd. = —]cgp.—logp.+euﬂt

but

8. =0,(1+eFly)
Pe = pu(1 + eFpu)

pe=pat pufol L = (14 UL )

n (22

The inner term in brackets is the reference

hydrostatic scaling, ~
zmn-whs- p andp” muwmmuumm

log(l + ex) = ex

— Fly = _lrd'" (’:‘p')pq —eFpy

2.3.1) Continuously stratified fluid
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S this into the

1 H
,,,=_,,,+;(& =

Ps

(106 1

""E“’" P Oz

|

(

Ps

)

18 o
q=3y+V’U’+EE (%p.a)

This is the full quasi-geostrophic potential vorticity for a compressible stratified fluid.
Note: for stratified Boussinesq fluids this form reduces 1o

[From the reference hydrostatic relation, the second term in square brackets can be written
19p,

T
but this is just

e om(a %)

and the term in brackels

=—~ =~

[ 9
50 we can wrile the perturbation hydrostatic relation in terms of perturbation potential
ftemperature:

5

=

B

. put this back into the vorticity equation:

Dy JE? 8 (p. B\] _
BI[””*‘-’fnT,,.a:(ms:)]-“

This is the non-d quasi-geostrophic: potential vorsicity.
Redimensionalise:

_ Jod (P @ (o
=areor 25 (55 (2))

® o

pafo

dz

g=0y+Vi+ 3 (%:—f)

(this is OK for the ocean).

q s conserved lollowing the flow:

M I =0

Everything is represented in terms of one prognostic equation in one variable (the
streambunction).
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2.3.j) One variable to rule them all

= In quasi-geostrophic theory, we obtain only one variable in the system, the quasi-
geostrophic stream function 1, that rules them all.

&, Everything can be expressed in terms of 1 in the quasi-geostrophic set.

* The horizontal velocity can be expressed in terms of the stream function (it is the definition
of the stream function), so:

__ o W
oy’ T Oz
* The pressure is a stream function for the non-divergent geostrophic flow (see #GFD2.3i):
P’ = pofoy)
* The density is the vertical gradient of the stream function (hydrostatic balance):
r— _Pofod¥
g Oz

* The vertical velocity is material tendency operator applied to the density, so it can also be

expressed in terms of :
o oY
Y= N2 [6t +u.\7] 0z

= With the quasi-geostrophic set of equations, it is easier to make predictions following this
procedure:

r
The flow field 1/'° (ex: weather today) constitutes the initial conditions.

1) Compute the three-dimensional field of potential vorticity

g = By + VY +fn(¢,)

2) q is conserved with the flow. But at one location, g changes as it is blown around by
the wind. Thus, the next step consists of computing the advection terms and
integrating the prognostic equation forward in time to find the next state for g (gto+1):

dq
— . =0
ot +v.Vq

In the quasi-geostrophic set, time steps can be quite long (half an hour or so) because
gravity waves are filtered and nothing really fast is going on.

3) Invert the elliptic operator g = By + V21 + fn(v.) to estimate the stream func-
tion. This provides a new flow field 10+ that will constitute the initial conditions for
the next time step.

% Using this prediction system, you can do it 48 times in a row. This will provide weather
forecasts for tomorrow. The first weather predictions were done with the quasi-geostrophic set.

GFD2.4: Quasi-Geostrophic Theory III — Applications and Diagnostics
2.4.a) Development

= In order to predict the weather without taking into account the potential vorticity, one can
still consider directly the time development of 1, i.e. pressure (focusing on pressure centers for
instance). This means that we can remain in the quasi-geostrophic framework without going through
this inversion process for the potential vorticity.
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Elliptic operator

% Consider the development equation for the potential vorticity, in which the formulation of
the potential vorticity is developed in term of 1 (slightly simplified below):
0 f? f?
(VY +f+ 5 +v.V (V% + f+ =0
at Il)[) f N2 /d)zz ’z]b f Nz wzz

= We can rearrange it if we assume all the functions are well behaved (differentiable, etc) and

that we can swap over the order of the derivatives. Instead of having > of a big elliptic function of ¥,

. a .
we have a function ofa—lf , and we put the second term on the RHS and develop it, so that:

A £ 0 (v
(v2 n m@) 5 = vV (V% +f) - N2 35 ("'VE)

% The two RHS terms control the tendency of the stream function, and by extension, they
control the pressure development. Pressure development will thus be determined by 1) the absolute
vorticity advection and 2) the vertical gradient of the horizontal density advection.

So, if the sum of their contributions is negative there will be low-pressure development.
% Except that there is an elliptic operator in front of the tendency term.

% Let’s assume that the functional form of i is wave-like in (x, ¥) and it changed sign once in

the vertical (first-baroclinic mode). The effect of this operator (on this simple wave-like structure) is a

multiplication by a constant (> 0, involving the wavenumbers) and more importantly a change of sign.
Y o sinlz sinmy cosmz/H

= In this context, the local rate of change of i, or change of pressure is proportional to the
absolute vorticity advection and the vertical gradient of the density/temperature advection.
ol 2 f* o N
L x +v.V(VH+ ) + 1o vyl
ot (Vi +§) N2 09z 0z

2.4.b) Advection of absolute vorticity

0
= Advection of absolute vorticity is proportional to: a—’f X V.V(V2¢ + f)

We study here an eastward flow with wave-type structure (see below), such that:
Vi = —(I* + m*)y

% In the advection of absolute vorticity, there are two terms: one associated with the relative
vorticity and the other associated with the planetary vorticity.

* Advection of relative vorticity — short waves:

) In the ridge, the flow is clockwise and the relative
ridge vorticity is negative, while in the trough, the relative

L e . a
E trough vorticity is positive. Inregion l: v.Vé > 0 = a—lf > 0.
L
I i~ % With the flow going eastwards, the zonal
‘ advection of relative vorticity will send troughs and

ridges eastwards. This is the case for short waves for
which & dominates.

* Advection of planetary vorticity—long waves:
d - .
As d—i > 0, the meridional advection of planetary
vorticity is controlled by the northward southward
oscillation of the flow. It results in the opposite effect to

the relative vorticity advection and will send troughs and
ridges west. These are long Rossby waves (see #GFD3).
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= In conclusion, there is a competition between the advection of planetary vorticity (the
Rosshy wave term) and the advection of relative vorticity (the synoptic-scale term). Both will influence
the way in which the pressure (weather) will develop.

2.4.c) Vertical gradient of temperature advection

= The rate of change of the stream function, and by implication the pressure development, is
proportional to the vertical gradient of the temperature advection:

oy 0 o _ Opo

The question is: “What is the vertical variation of the temperature advection?”

In the example on the side, we study an
eastward flow going through the juxtaposition of cold
and warm air masses in the x-direction. These air masses
are associated with positive and negative zonal gradients
of temperature which decrease with height. For
instance:

In region A, there is cold advection at low-level

250

500

750

(v.V8 > 0), then 9(v.v6) VB) < 0 and a trough develops.
1000 v In region B, there is warm advection at low-level
9(v.ve) VB)

(v.V@ < 0), then > 0 and a ridge develops.

Eastward flow v

2.4.d) Vertical velocity: quasi-geostrophic omega equation

= With the quasi-geostrophic set, it is also possible to make diagnostics for weather analysis,
in particular, to diagnose the vertical velocity.

* We could deduce the vertical velocity by integrating the continuity equation:
ow ou N ov
0z or Oy

. . s " a a .
% This is mathematically sound but it is ill-conditioned. ﬁ and i are large terms which have

cancellation between them (small differences between large terms). Such calculation for vertical
velocity is not numerically accurate for real data sets.

* The quasi-geostrophic system to the rescue . From the continually stratified version of
the quasi-geostrophic theory (detailed in #GFD2.3i), the vertical velocity can be written:

_ iapo dpo
W= B“(ataz T Ovaz)

% We eliminate the tendency term by estimating the Laplacian of this formula and using the
vertical gradient of the vorticity equation:

v2 (EBPO) _ _v ( vo. vap0> B;lvzw

dz Ot 7]

2
S AR+ v+ = Fo L 5 v (S 0) ~ T8 D v+ &)
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= Equating the two RHS y|elds a diagnostic equation for the vertical velocity in terms of the
geostrophic stream function (§y = V2 Do). It is called the

(B9 + 52 ) 1 = g0 TG+ ) =5 (w0 Vapo)

0

% It is written as an elliptic operator on the vertical velocity, equal to the summed contribution
of two terms.
= The first RHS term is related to the vertical gradient of the absolute vorticity advection.
» The second RHS term is the Laplacian of the temperature advection.

% This is the other way around to #GFD2.4a, in which we had vorticity advection and the
vertical gradient of the temperature advection.

= If we study a wave-type pattern, both elliptic operators can be represented by a simple
change of sign. It follows that:

w X —% (v.V(f+§)) —v.Vo

= Note that this time we have eliminated the tendency term (rather than the vertical velocity
term) between the vorticity and thermodynamic equations and obtained a diagnostic equation for w
(rather than a prognostic equation for ). This equation is usually derived in pressure coordinates.

2.4.e) Application of the omega equation
= Go to: https://www.meted.ucar.edu/labs/synoptic/qgoe_sample/ggoe_widget.htm

% It all gets very complicated and you have to sit and scratch your head a long time looking at
these equations, making sure you have got the sign right... because if you get the sign wrong you get
it all completely wrong.

2.4.f) Recap
= Here is a summary for all these simplified quasi-geostrophic illustrations:

* The fall or rise of geopotential is proportional to:
] = positive or negative vorticity advection
» the rate of decrease with height of the cold or warm advection

* For diagnosing the vertical velocity, rising or sinking motion is proportional to:
= the rate of increase with height of the positive or negative vorticity advection
= warm or cold advection
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