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INTRODUCTION

Overview of Atmosphere and Ocean
Dynamics

This is a course on Geophysical Fluid Dynamics. Before we start the course, let’s go on a little
tour in the Atmosphere and then the Ocean. This will give us a quick overview of the general circulation
patterns we can observe in each system. We will highlight some similarities and differences between
the Atmosphere and Ocean circulation that will provide insight on the associated dynamics. Below,
snapshots were extracted from the https://earth.nullschool.net/fr web interface in Sept. 2016.

Atmosphere dynamics

First, on the right are the low-level winds and surface pressure
over the Atlantic Ocean. The arrows are the winds and the colors are
the surface pressure. The first thing we notice is that there are winds
swirling around maxima and minima of pressure. In the northern
hemisphere, there is a high-pressure system — an anticyclone. The
wind is going around it clockwise. In the southern hemisphere, there is
another big anticyclone, around which the wind flows anti-clockwise.
Around these high-pressure areas, there are a few little low-pressure
areas. The wind is going around them in the other direction.

% We easily observe that high-pressure areas are much bigger
than low-pressure areas, which is fairly normal.

In the Indian Ocean (see figure on the left), there is another
high-pressure area. The winds are flowing northwards along the coast
of Africa. This is the northern Hemisphere summer.

The snapshot on the right
shows the Pacific region. There is
another couple of anticyclones, along
with some cyclonic features. We
observe a convergence of the winds in
the equatorial region - the Easterlies - a
little bit north of the equator. This is the
Inter-Tropical Convergence  Zone
(ITC2).

In the South Pole region (figure
on the left), it is southern hemisphere
winter. There is a large area of low-pressure, around which a jet is
circling clockwise. The low-pressure system is surrounded by 5 intense
cyclones, swirling around Antarctica. This is a fairly common
configuration for winter: an intense winter jet, and 4-5 cyclones.

Atmosphere dynamics 5



On the right is a zoom on the North Atlantic. We have a closer
look at the big Azores High — the north Atlantic Subtropical Anticyclone
— and a smaller more-intense cyclonic feature. The anticyclones are
bigger than the cyclones and this asymmetry is fairly common. We will
see that this is due to the nonlinear nature of atmospheric dynamics
(see #GFD2.1a).

The Figure on the left shows
the actual wind strength in color. It is
easy to see that the strongest winds are
around the cyclones. If we zoom a little
bit more in the North-East Atlantic sector, we observe a very strong
cyclone, strong enough to have a name — Petra. The winds are not only
very strong, circling around the low-pressure system, but they are also
changing direction very abruptly across a line. This line is a front, a
temperature front. Surface winds change direction very suddenly
where the temperature is changing very suddenly as well.

Surface 850 hPa 500 hPa 250 hPa 70 hPa

On the figures above, we inspect the summer winds at various height in the northern
hemisphere. At the surface the winds are stronger over the Ocean than over land, due to the stronger
drag over land. Going up to 850 millibars, we see the same structures, i.e. cyclonic and anticyclonic
flows, but the winds are getting a bit stronger. At 500 millibars, winds are substantially stronger and
they are flowing around the Earth, with the main Jets in the Pacific and Atlantic basins. On that
particular day, there was also a jet over the Scandinavian region and a sort of vortex over the north
pole. We still observe some small-scale features. At the top of the troposphere (at 250 millibars), where
the winds are the strongest, we see the Pacific jet, the Atlantic jet, and strong winds all the way around
the northern Hemisphere. In the stratosphere (at 70 millibars), the amplitude of the winds has dropped
a little bit. We only observe very large-scale patterns. There are not so many smaller-scale details
remaining.

Tropics (70 hPA) Tropics (10 hPA) South Pole (10 hPA)

In the tropical stratosphere, we observe the tropical winds: the broad easterlies. Going higher,
at 10 millibars, they get stronger. Stratospheric tropical winds tend to change sign with altitude and
over long timescales as well.

In the southern hemisphere —winter stratosphere, we observe the stratospheric vortex which
is much stronger than all the features we observed previously.
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Ocean circulation

and unstable Antarctic circumpolar current goes all the way around

Antarctica.

In these maps, surface currents are represented by these
swirling features and the colors show the temperature anomalies
(relative to the climatology). The Atlantic Ocean surface circulation is
shown on the left figure. Most of the
strong currents are either in the tropical
region or in the western boundaries.

In the Indian ocean (figure on
the right), we observe some tropical
currents associated with a lot of
perturbations. In the south, the strong

The figure on the left shows the circulation in the Pacific Ocean.
Similarly, we observe these tropical systems, confined to the equatorial
region, that we are going to explore in #GFD4. Along the Japanese
coast, there is a strong western boundary current with lots of eddies -

the Kuroshio.

The Gulf Stream is a very strong
current that flows along the Florida
coast up to Cape Hatteras where it
flows eastwards into the Atlantic
Ocean. The Gulf Stream is meandering
and shedding cyclonic and anticyclonic eddies as it goes. Gulf Stream is
not just a steady river, it is a very unstable active meandering system.
The equivalent western boundary current in the Pacific is called the
Kuroshio. Likewise, it flows between warm water to the south and cold
water to the north. It is a baroclinically unstable region, with lots of
mesoscale features (see #GFD3.4). These eddies are equivalent to the
cyclones and anticyclones we observed in the Atmosphere.

Below, a zoom on the eastern Pacific equatorial region
provides a better view of the equatorially confined wave-like patterns.
In #GFD4.4, we are going to describe a whole family of different
equatorial waves. The equatorial waves also imprint the surface
currents and the temperature anomalies in the equatorial Atlantic.

Eastern Equatorial Pacific Equatorial Atlantic

In the western tropical Atlantic, the Brazil Current is a counter current. It is a very complicated

current system in the mean currents associated with a lot of variability.

Ocean circulation



Finally, we focus on South Africa and the Antarctic
circumpolar current. The Agulhas Current flows westwards
along the eastern coast of South Africa. Then it retroflects,
meanders, and sheds eddies. Periodically, it also emits large
eddies (Agulhas rings) into the Atlantic Ocean.

Objectives of this course

These descriptive tours of the Atmosphere and Ocean circulation illustrates the large diversity
of phenomena that we must get to grips with. In this course, the goal is not to analyze each one of
them individually. On contrary, we will try to integrate all of them into a framework for understanding
the dynamics of geophysical fluids in a rotating stratified environment.
Welcome to GFD class

Videos of the lectures

Videos of the lectures in French and English are available on Nick Hall’s YouTube °
channel at htips://www.youtube.com/channel/UCqjV8aiVVEVRAYfADG6Br-w/videos.
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GFD pillars

COURSE OUTLINE

This class is composed of five chapters.

1) The first course will be devoted to a reminder of the governing equation systems (see
#GFD1.1) that we will use throughout this class. We will formulate the shallow water equations (see
#GFD1.2) and introduce some useful variable/coordinate transformations, along with some refresher
on vorticity (see #GFD1.3).

2) The second course will provide a fair grounding in quasi-geostrophic theory (see #GFD2).
You may have heard of it or even used it, and possibly have a limited understanding of it. After this
course, | hope you will understand it perfectly.

3) The third GFD session focuses on the Rossby waves (see #GFD3). You have seen Rosshy
waves before. In this course, we are going to go into much more detail about Rossby waves and
instabilities.

4) We will then go to the tropics and discuss gravity waves, along with many other types of
tropical waves (see #GFD4).

5) The last lecture is more descriptive. We will discuss various nonlinear phenomena (in the
Atmosphere and the Ocean) which are associated with scale interactions (see #GFD5).

The prerequisites for this course are partial differential equations and vector calculus. You
need to make do with derivatives, partial derivatives, divergence, and rotational. You have to
remember what the Coriolis force is, along with geostrophic balance. #GFD1 provides a little reminder
of the basic equation of motion, flow vorticity, and divergence.

Here is a list of books. The course is taken out of these books.

Books:

Introduction to GFD - Cushman-Roisin
Introduction to Dynamical Meteorology - Holton
Geophysical Fluid Dynamics - Pedlosky
Atmospheric and Oceanic Fluid Dynamics - Vallis
El Nifio - Philander

GFD Keywords

Geophysical fluid dynamics is the study of fluid Maximum Spin
dynamics on rotating planets, often when there is some |
stratification in the fluid. So, the planet is rotating and

there is a variation in density in the fluid. This is the / %’o
essence of GFD.
The important keywords are rotation and
stratification. In this course we will also talk about
balance and development. z
—7
= Rotation. Everything changes when you put 2
the fluid in rotation — on Earth.
= Stratification. This means density varies in Planetary
horizontal and vertical directions. It is the second pillar Vorticity

of the GFD after rotation.
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= Development is when things change with time, when there is a time derivative in the
equations, often called tendency. The development is born from an imbalance.

= Balance: It is basically any system of equations where there is no time derivative. Thus, it is
a system that is not developing in time. Therefore, there is some sort of balance between the terms in
the equation. There are numerous types of balance. The simplest type of balance that you know is
geostrophic balance, i.e. the balance between pressure gradient force and Coriolis force. We can go
far by supposing that the system is close to a certain equilibrium. But if we are in a state of equilibrium,
we do not have any development. We cannot do forecasts.

= Non-linearities are very important. There are nonlinear terms in the equations (advection
terms) that give rise to interesting nonlinear dynamical systems, especially for scale interactions and
asymmetry. For instance, we will see that non-linearities explain the difference in the size between
cyclones and anticyclones.

= We define barotropic and baroclinic and the consequences for the fluid dynamics.

= The variables: In the primitive equations, we classically use flow velocity (3D wind/current,
u,v,w), pressure (p), and density (o).

% We will try to simplify the systems of equations. We will try to reduce the number of
variables or use alternative variables. With some approximations, we can solve less complicated sets
of equations than the primitive equations. For instance, we will use the layer thickness (h,,). If we use
a layer model, then the thickness of a layer will inform you about the stratification of the fluid. Vorticity
(§) and divergence can also be used as state variables, instead of the flow velocity. We can use stream
function () and potential vorticity (§).

These variables are all useful depending on which equation set you are solving. We will start
by looking at the shallow water equations (see #GFD1.2). You may have seen the shallow water
equations bhefore or used them without much explanation. In #GFD1, we are going to derive them. We
will perform a coordinate transformation and introduce the reduced gravity. We will discuss external
and internal modes. We will finish a summary of circulation and vorticity.
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CHAPTER 1

Shallow water and vorticity
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CHAPTER 1
Shallow water and vorticity
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GFD1.1: Basic Equations, Balance. and Flow Partition

1.1.a) The primitive equations

= The primitive equations are composed of a set of 5 equations.

* First, the x and y momentum equations:

@+u%+v%+w%—fv _19p
at ox oy 0z pOx
v v ov v LG

development rotation

pdy

% They are Newton's law: force equals mass times acceleration or force per unit mass equals
acceleration. Conventionally, on the left-hand side, we have acceleration and on the right-hand side
we have the force(s). But here, the term associated with the planet rotation - the Coriolis force
(outlined in blue) - is traditionally put on the left-hand side of the equation. It is not a real force, it is
just an artifact (fictitious force) of having changed our coordinate system.

= |t is convenient to keep the Coriolis force on the LHS because it can be thought of
as balancing the (real) pressure gradient force in the geostrophic balance (blue shading).

= The nonlinear terms (orange shading) — the advection terms - are included in a
higher-order balance. We will see that this balance accounts for the difference between
small intense cyclones and big flat anticyclones that cannot be explained by geostrophic
balance (see #GFD2.1a). Higher-order terms (nonlinearities) need to be included to allow
asymmetry in size and intensity between cyclones and anticyclones.

= The development is outlined in red. As mentioned before, without this term we
cannot perform any forecasting, unless your forecast is persistence.

%, During this course, we will choose to keep or not the non-linear terms depending on
their importance in the process we analyze. We will see that it is quite useful and interesting to
just study a developing linear system. It will give rise to wave solutions that can still transport
perturbation properties with the flow (see #GFD4).

* For the rest of the primitive equations, we start with the vertical momentum equation. It is
the leading order balance, a balance between gravity and the vertical gradient of pressure, known as
hydrostatic balance: dp

5=—P9

* Then, we have the continuity equation or the mass conservation equation for an
incompressible fluid, i.e. the three-dimensional non-divergence:

ou Ov Ow _

£+3_y+§_0

* The last equation describes how the density of a fluid parcel will change following the flow.

It is the density equation: % N u@ N ’U% N w@ _ @
ot oz oy 0z 022
% Basically, the only thing that is likely to change the density of the fluid is diffusion, unless it
is in contact with the surface. If you chose to think in terms of temperature, you would have to add a
state equation that combines pressure and temperature variations in the Atmosphere, or associates
density with temperature, salinity, and pressure variations in the Ocean.

= We have 5 state variables, the three wind/current (u, v, w) components, the pressure (p),
and the density (p). And we have 5 equations: two prognostic momentum equations, a diagnostic
hydrostatic equation (no development), a diagnostic continuity equation, and a prognostic equation
for density (which is just the conservation of density but it remains a prognostic equation).

1.1.a) The primitive equations 15



Thermal wind balance

Vertical coordinate transformation

1.1.b) Geostrophic/hydrostatic flow - thermal wind balance - vertical coordinate transformation

= We start by considering a balanced situation in a homogeneous fluid (with constant density
po) in all directions (no density variations) or a fluid that satisfies the Boussinesq approximation (see

#GFD1.1c), i.e. the density only varies a little bit (o(x,y,z,t) = p, + o' (x,y,2,t) with p’ < p,).

% Geostrophic flow can be possible because we can change the pressure in the fluid through
variations in the height of the surface. If there is a tilted surface to the fluid, then we will have
horizontal gradients of pressure throughout the fluid. With a horizontal pressure gradient, the flow
can accelerate and establish geostrophic balance.

= So, let’s consider a Boussinesq fluid that satisfies geostrophic balance in the horizontal (v,
is the geostrophic meridional flow) and hydrostatic balance in the vertical:

dp op
9 pofug, 5, — P9

2
= This leads to thermal wind balance: 0 b _ % — 3,0

0xdz po 0z —g%

% The vertical gradient of the flow (shear) depends Cold
on the horizontal gradient of the density. This is thermal wind

on z X
alance. | . vy .
% This means that if there is no horizontal gradient in X ®

the density field, the flow will not change in the vertical Lower Higher
direction (z), it will be barotropic. pressure pressure

Warm

= To derive this result, we used z as the vertical coordinate and made a strong approximation
about the density field. We had to consider a reference density (p,) that remained constant when
differentiating the hydrostatic equation in x: we did not consider the horizontal gradient of density in
this step of the calculus.

% Let’s now consider a method where we can come to the same conclusion but for which we
do not need to make any approximations in the density field. For this, we need to change the vertical
coordinate of our set of equations. Previously, we used z, now we will use pressure as our vertical
coordinate.

= Let's consider a pressure surface in (z,x) space with constant value p;. We have

geostrophic balance: Ap
s — v
oz |, pfug
% With a little bit of geometry, we can rewrite the horizontal pressure gradient as:
0P| _P2—P1_P2—P10Z _ P1—P02 p1
dxl, ox 6z Ox 6z Ox
0z
op dp 0z f >
hat —ESTT _ ,fy
oz |, dz Ox 5 P P1 dxr P2
]
= Using hydrostatic balance a—z = —pg, we get two formulae:
0z|  fu, dz 1
or|, g op P9

% Differentiating the first by p and the second by x leads to:

Oz [fov, _ 19 (1)
p \P

16 GFD1.1: Basic Equations, Balance, and Flow Partition
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Barotropic flow definition

% The vertical gradient of the geostrophic flow in pressure coordinates is related to the
gradient of 1/p along a pressure surface (horizontal gradient measured in pressure coordinates), i.e. a
quantity related to density. This is thermal wind balance expressed in pressure coordinates. The big
difference here is that we have not made any approximations for the density field and we end up with
the same conclusion.

% The useful interpretation we can draw from this analysis is that the horizontal density
variation along a pressure surface leads to a vertical gradient (shear) in the wind/current.

pressure and the density are functionally related
If pressure and density surfaces are parallel , the right-hand term would be zero,
density does not change along a pressure surface

“ because there is no gradient of density along the pressure surface.

= This kind of flow is called barotropic flow. This is the actual definition of barotropic flow
where there is no change of density along a pressure surface. And in this case, there is no vertical
gradient of the current/wind, i.e. barotropic flow (no vertical variation in the flow).

% This is illustrated in the figure below.

7 ’ z s
—’_"__--"' // /’,:" ”/r’
s _ ‘:-—-"' l/"’ ’,—“‘ 7
P oy . g S et et g
po-2dp o P9 po-2dp ety y.
’/I ___--—"?::: ------- l," _____________ 7
Prdp = e po-dp
" _H----geostrophic wind
po |4~ Po
(a)
X X
Barotropic Atmosphere Baroclinic Atmosphere

The blue portion of the surface denotes a cold region while the orange portion denotes a warm region.
This temperature structure is restricted to the surface in (a) but extends through the depth of the fluid in (b).
The dotted lines enclose isobaric surfaces which remain at constant slope with increasing height in (a) and
increase in slope with height in (b). Pink arrows illustrate the direction and amplitude of the horizontal wind.
Only in the baroclinic atmosphere (b) do these vary with height.

1.1.c) Density and its variations

= We mentioned variations of density. Let’s now introduce some commonly-used levels of
approximation - a useful glossary. Various approximations ordered by increasing levels of accuracy:

ov
Homogeneous: p=po (p'=0), p=po(z)+p'(z,y,t) = 5 = 0
Boussinesg: p=po+ P’(CB, Y, 2, t)a p= pO(z) + p’(il?, Y, 2, t)

Anelastic: p = po(2) + p'(z,y, z,1)

» First, we have homogeneous flow. It happens when there is no variation in density at all in
the fluid. The density is the same everywhere. Similar to a bucket of water that is spinning around.
Density is constant, but the pressure can vary. The pressure varies with z, as you go down the pressure
increases (hydrostatic balance). Pressure can also vary in the horizontal (x, y) and time, because of
the variation of the free surface. But there are no horizontal gradients of density, which means that
there will not be any variation of the flow with depth.

1.1.c) Density and its variations 17



Boussinesq approximation

> Boussinesq flow is the next level up. There is a constant reference density {po) and a
perturbation (o') which is small compared to the reference density (o’ «< po). In this flow, the pressure

is composed of a reference pressure (pg) which is only a function of z and some pressure perturbations
associated with the dynamics.

» The Boussinesq approximation is a good approximation for the Ocean. The density
of seawater near the surface is ~1025 kg/m?. Sea water is not totally incompressible. At the
bottom of the ocean, the seawater is denser (~1040 kg/m?), but fractionally not very different.
The variation in density associated with compression is small compared to the actual density
(~1.5%). So, Boussinesq remains an excellent approximation in the Ocean

* In the Atmosphere, the density at the surface is ~1Kg/m?>. As you go up through the
Atmosphere, the air parcel gets less and less dense and there are large variations of density.
Yet the Boussinesq approximation is still useful in the atmosphere because these variations in
density are mainly in the vertical, so they do not affect the horizontal gradients of density and
they do not play into the dynamics of the atmosphere. We can study atmospheric dynamics
using the Boussinesq approximation at large scales, and it works.

» If we want to analyze the variation of the density with height, we can use the anelastic
approximation where the reference density is a function of z (pO (2)). This approximation is used for
smaller-scale (mesoscale) meteorology.

1.1.d) Barotropic and baroclinic flow

= Then we recall the definition of barotropic, where the density is a function of pressure
implying that there is no vertical variation of the geostrophic flow.

6Vg
p=pp) = H°=0

&, Barotropic: In some circumstances, the flow is vertically coherent. Depth independent flow
is associated with the barotropic component also referred to as the external mode.

This terminology comes from changes in the level of the free surface and which are transmitted
throughout the depth of the fluid, i.e. an external influence on the flow (see #GFD1.2e).

Barotropic flow can exhibit many phenomena: vortices, Rosshy waves, jets, and instability. It
is a good starting point for a lot of understanding of the dynamics of Atmospheric and Ocean. It is the
foundation of large-scale ocean circulation theory (see #GFD5.3c). Many theories related to the large-
scale Ocean circulation are barotropic (Stommel, Munk, ...).

= Baroclinic just means that it is not barotropic. There are variations of density on a pressure
surface with all sorts of interesting consequences.

p # p(p)

% Baroclinic: When density surfaces cross pressure surfaces the flow is baroclinic. The
baroclinic component is associated with horizontal temperature gradients, fronts, developing
cyclones, ocean eddies on the thermocline. Baroclinic processes are necessary to liberate potential
energy and generate circulation (see #GFD3.4). The growth of geostrophic systems depends on
baroclinic conversions of energy. Baroclinic instability occurs on a preferred scale (see #GFD3.4j) - the
Rossby radius (see #GFD1.2a) - and this is important for generating geostrophic turbulence.

18 GFD1.1: Basic Equations, Balance, and Flow Partition



1.1.e) Stationary and transient flow
= A quick word on different ways of dividing the flow, mainly in the Atmosphere.

What does an atmospheric scientist mean when he talks about stationary waves? He might be
using the wrong terminology.

* Stationary waves: A stationary wave is like a wave which has fixed nodes and it oscillates in
situ without propagating (like when you move in the bath). But, when a meteorologist refers to
stationary waves, it means something much simpler. It is just the departure from the zonal average:

¢=[¢]+¢

% Forinstance, consider a variable (winter 500 millibar height) and estimate the zonal average
(noted with squared brackets) by computing the mean value around latitude circles. Subtracting this
zonal mean component from the original field yields the stationary wave pattern.

gocpolental height (m) weme DJIF

% If you are interested in the flux of temperature (or heat) which is effected by the circulation,
then the zonal average of this flux will depend on two components:

[vT] = [][T] + [*T"]

1) The flux of the zonal average temperature by the zonal average wind. This is the
overturning circulation cells (Hadley/Ferrel cell).

2) The zonal average of the product of the stationary wave wind with the stationary wave
temperature.

* The transient part of the flow. The time average of the flow is denoted by a bar. The
instantaneous flow is equal to the average plus a perturbation. This is the Reynolds decomposition.

6=3+¢, T=TT+vT

% In this case, the average flux is the flux by the
average flow plus the transient eddy flux. The latter is
the (very important) transfer of temperature and
momentum which is carried out by these transient
systems in the Atmosphere and the Ocean (see #GFD5).

On the right, the transient eddy flux of
temperature 850 millibars reveals the “storm track”
regions, in the western Atlantic and western Pacific,
where we encounter the most intense transfer of heat
associated with these synoptic transient systems.

Higgh Paci w'T" (K ) ; B3 mh

E S LT EEREREDR

A e s Eom
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Rossby number

= Writing down the equation for the development of the temperature, i.e. development of
temperature, plus advection terms equals forcing minus dissipation:
oT

—_ NT=F-D
ot +v.V F

% The flux by the average flow is equal to the average forcing and dissipation plus the transient
flux. The transient flux term is put it on the right-hand side, but it is just a part of the flow (see
#GFD5.1c). It is however often regarded as another type of forcing: the transient eddy forcing. It is the
main term that balances the mean advection.

GFD1.2: Density Coordinates and Shallow Water Equations

1.2.a) Some scaling parameters

Let's look at some typical non-dimensional numbers which are important in geophysical fluid
dynamics (rotation and stratification).

1) The importance of rotation. We compare the advection term with the Coriolis force.

ou
uam/fu

% We compare this steady acceleration term with the Coriolis force, by computing the
following ratio:

U
Ro= 47

typical wind U divided by f times a typical length scale L

L, If the rotation/Coriolis force is important then this number, the Rossby number, will be
small and the flow will be close to geostrophic.

2) The importance of stratification: Froude number. For steady non-rotating flow, the steady
acceleration term (advection term) is balanced by the pressure gradient force:

ou 10p

Uy — = ———
ox p Oz
. . . d . . . d
% In this framework, we compare vertical divergence (a—v:) with horizontal divergence (ﬁ). A
scale analysis of this ratio (see Cushman-Roisin) gives the Froude number:

Recall
_uv _ v 2_90p_ 49
FT_NH_1/_q’H N - pdz H
(9" = 9Ap/p)

Typical flow speed U divided by N
times the typical thickness of your fluid H
N is the Brunt-Vaisala frequency, related to the vertical gradient of density

% The Froude number can also be expressed as U divided by the root of g’H which is the
gravity wave speed.

= |f the Froude number is small then the stratification is strong and the gravity waves are very
fast, i.e. a kind of rigid system where there are no big vertical excursions, fast gravity waves, and not
much communication between the layers.

= |If the Froude number is large then bigger vertical excursions of the flow can occur.
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Rossby Radius

3) Which is the more important rotation or stratification? We can divide the Rossby number
by the Froude number. This is the square of the :
R, NH +g'H

R e T 17

When the Burger number is close to 1 that is when both the rotation and stratification are
important. There are many different types of scale analysis that lead to this situation. For example,
you can say that vorticity advection balances vortex stretching (see #GFD3.4c and #GFD5.5b).

You can back out the typical length scale Ly at which these two processes are both important.

LI
e

This scale is called the . It is a fundamental important quantity in geophysical
fluid dynamics. It is the typical scale of the systems we described in #GFDintro (cyclones and
anticyclones) in the Atmosphere and in #GFDintro in the Ocean. We observed that they are much
smaller in the Ocean. This is due to the stratification.

The Rossby radius is also the scale of the coastal Kelvin waves (see #GFD4.2b). ¥ Close to the
equator, the Rossby radius does not work as a useful scale because f = 0 (see #GFD4.3a)

Lg

1.2.b) Equation sets and variables

= Let's discuss how we can simplify the primitive equations (see #GFD1.1a). We have a set of
5 equations with 5 variables (u, v, w, p and p).

* The next step of simplification (see #GFD1.2ef) is to represent the stratification as finite
layers of homogeneous density and derive the shallow water equations (see #GFD1.2f).

% You can stack these layers on top of one another to get a fairly intricate description of the
flow but with only three variables: each layer has just u, v and h, the thickness of the layer.

% Shallow water equations: three variables + three prognostic equations

* Then we can go one step further (see #GFD2), with the quasi-geostrophic system, in which
there is only one variable, the stream function ().
. Quasi-geostrophic system: one variable + one prognostic equation

= Instead of considering the classical horizontal components of the wind/current (u, v), we
can express the horizontal flow in terms of its divergent (irrotational) and non-divergent part:

v = (u,v) = =V +k Vi
with ¢ the velocity potential and 1) the stream function, such that:
86 8¢
, U=t o
or 0Oy oy Oz

% Non-divergent flow can be defined entirely in term of the stream function, while the
divergent part (irrotational flow) can be described entirely in terms of velocity potential.

The divergence of the flow is: D = V.v = ~V?¢
The relative vorticity is £ = k.V v = V29

oy ox
Along a streamline: dy/ =0

i e

g e | et

Vv = const
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Montgomery potential

1.2.c) Alternative vertical coordinates

= We can simplify the equations if we use a conserved quantity as the vertical coordinate. In
this frame of reference there is no “vertical velocity”, rendering the system two-dimensional. So, we
can reduce our equation set by using coordinate systems based on density in the ocean or potential
temperature in the atmosphere. But the price we pay for this simplification is to complicate the
boundary conditions: coordinate surfaces outcrop, they move in time, and our coordinates are no
longer orthogonal.

% We will transform our primitive equations, using a vertical coordinate transformation. To
do so, we first derive a couple of general rules that will be useful to transform the equation into density
coordinates (see #1.4.d).

= Let’s consider an (x,z) coordinate system in which a field ¢varies. There is a line (or surface)
on which a certain quantity s (or density) remains constant.

* We want to transform the horizontal derivative of ¢ between z and s coordinates. With a
little bit of geometry, we can show that:

8_¢ M oz, 6z — 0
ox ox
0“6% ) bc — ¢ (62 ¢B — da
z c S AR A el LR
42 57 - bz (5:5) * oz
b2 08| _ 00 (0], 9
, or|, 0z \0z|, or|,
dz|, Oz|, 0z Oz|,
= Using the inclination of the surface iso-s ?, @ _ Qf?ﬂ 2]
the vertical derivative becomes: 0z 0z Os

1.2.d) Density coordinates
= We transform the primitive equations (see GFD1.3.a) into a density coordinate system (see

CEENHGIRLGEREETGTE on the following page).
dp 0z

. . P .
* The hydrostatic equation: — = —pg, using weget: — £ — _phg—
0z dp < ap

% At this point, we introduce a new variable P (capital P), called the Montgomery potential,

defined as: P = p + pgz. The hydrostatic equation can be written neatly as: P
op
Hydrostatic balance
. Du 1 0 ] apla
* The momentum equations: — — fv = —— 2 -L [—p -2 ]
Dt po Oz |, po loxl, |azjaxl,
1 apl az ] 18
= —_——]— =+ —_ = —_——
po |9x p 2 dx p Po 9x p

% As density is conserved, there is no vertical velocity when developing D /Dt. The momentum
equations in the density coordinates can be written (we lose w and replace p by P):

ou ou ou 1 AF
E—Fua_wp—l_v%p_fv__p_g%
%" "ozl Byl, oo 0y
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Details for the transformation of the equations into a density coord syst

1) Hydrostatic equation
9 __
F i
Op _dpdp _ _
2= dz dzdp
ap dz
dp m&p
Define
P=p+pgz
8P_8_p 9z
% ap+gz+pgap
or_,
o 7

Hydrostatic equation in terms of “Montgomery potential® P.
2) Thermodynamic equation (density equation)
in any coordinate system (Boussinesq fluid - incompressible)

Dp

Dt =0

in z coordinates

dp dp ap ap
=0

ot Bz,+v M P

ie.
dp  dzxdp dydp dzdp _
ot " dtor  dt dy dtdz

On a surface of constant p, z varies. To make z the variable and p the coordinate, we
rewrite this equation swapping the variables:

dz 0z +uBz +uc'iz 4 90 dpﬂz
it o oz dy dt ﬂp

and the last term is zero because p is conserved. This gives us an equation for w.

=w

3) x momentum equation
Du 1 ap
Dt 1= B,
—_1|o| _9 oz
(== pg[a:r: 8z 8:’]
a apP
=——=| (p+pgz)=———5=
oz|, oz
since
D_2 w2402
Dt at az|, dyl,
(no vertical term because p is conserved)
Lo o Cje__loP
a " by
likewise
v v e 1 P
a+ua—zp+va—yp+fu "y
4) continuity equation
Z coordinates:
Oul | M _,
|, az
(ignore dv/dy term for the moment)
du dudp Oz dwdp _
() snd m”a:, dp 0z Oz |, bp Bz
muluplybyﬂ—ﬂ
Oz Ou du Bz w

=0

dp oz|, 8p dz|,” Bp

the last term can be expanded

ow_ 0 (Ds\_ 0 [0z, 0
3p " 8p\Dt) " 0p o " Bz|,
&z 6uaz +u8’z
Bpﬂt Bp&r dpdz
which leads to
2 (9:) oz oul o (0
at \ dp dp 0z|, "oz ap
Putting the y term back in gives
£ () 2] (%) + 81,65 -
ot \dp ap Al \ 9p
This is the flux form of the continuity ion. The tendency of dz/dp is given in terms of

its flux along density surfaces. Mphawmlmmabmmthismbeidammmh
mass conservation in terms of a flux of layer thickness

Oz h

3 Ap
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* The continuity equation: @ + @ + 3_11) =0
oz|, Oy 0z
% The transformation is slightly more complicated, but all the steps of the derivation are
written on the . Basically, we use for the horizontal derivative, for the

vertical derivative, and at one point we use the fact that w = Dz/Dt. We get:

9 (e ) (G 2 (D)
at \ dp Bxp ap Byp R

. . .. a L -
% We obtain a tendency equation expressed for the quantity ﬁwhlch informs us about the

stratification. It is mass conservation expressed as a convergence of the flux of stratification that leads
to changes in stratification.

= We can simplify this concept by considering a discreet representation with layers of
. az . . . hoo .
constant density po, é is going to become just v with h the thickness of a layer, and Ap a standard

density difference between two adjacent layers. That how we are going to derive the shallow water
equations (see #GFD1.2e).

1.2.e) Shallow water layers

= Let’s put together a system in which:

* There is a flat bottom, with fluid flowing over. There is a free-surface that can vary in time
and position. The average depth of this fluid (or reference depth) is a constant H.
* First, consider a simple case with two homogeneous layers of fluid:

< The thickness of the upper layer is h;
and lower layer h,.

2 The density of the upper layer is
constant and equal to o The lower layer is
slightly denser (ppt+Ap). H

< Since the density in each layer is
constant, the horizontal gradient of the pressure
in each layer is also constant, as are the flow
speed u and v.

L ap . . . . .
% At any point in space, p, u, v, P (and 5) are discretized in the vertical and are vertically

constant in each layer. On the contrary, z and pressure p remain continuous with p increasing from
the surface with z. % As the sea level varies in space, u, v, P also vary in space.

. . . ap, .
= We estimate the horizontal gradient of pressure (a) in each layer.

* The Montgomery potential in the upper layer (P, ) is estimated from the hydrostatic equation
(see #GFD1.2d) at the interface between the ocean and the atmosphere (at z = zg):

oP AP P, —P, The
- = = — atmospher;j

= = QZc & =gz Pheric
dp Ap 9% Po — Pa g% to be constant, pressure (£,), assumed

Py =Py +pogzs < Py = Py + pog(—=H + hy + hy)

% The pressure gradient force in the upper layer takes the following form:

i a_Pl - ga—D (where D is hy + h;)
po Ox ox

% The horizontal gradient of P; depends on the horizontal gradient of the total depth of the
fluid D. i.e. the flow in the top layer depends only on the height of the free surface. This makes sense:

pressure gradients in the top layer depend on how far from the surface the particle of fluid is.
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Coupling between layers

* The Montgomery potential in the lower layer (P,) is estimated from the hydrostatic equation
at the interface between the top and the bottom layer:
oP AP P,-P

ap Ap  Np

% This yields: Py — Py = Apg(—H + hs)
1 0P BD ,Oha

% The pressure gradient force in the lower layer is given by: — —F— = ~F 7

po Ox Bzc oz

= The flow in the lower layer can be decomposed in two contributions:

i) a barotropic mode or external mode Ap
. . . . . y dhy g = —
| ii) a baroclinic contribution g' —=. po Y

% This can be generalized: throughout the fluid the flow undergoes the effect of the free
surface variations, a barotropic external mode, and going down layer by layer different contributions
from the stratification (the baroclinic part) add up.

= The important difference between these two contributions is that the baroclinic term is
- . A _—_ .
multiplied by the reduced gravity g’ (= p—pg) which is much smaller than g. This means that:
0

* Tiny upper surface movements generate strong currents.
= To generate strong vertical variations in the currents (baroclinic part), the interface
between the density layers has to move substantially more (significantly stronger
horizontal gradients).
% This is realistic. The Ocean free-surface varies only by a few centimeters, while the
thermocline displacements are of the order of tens of meters.

= This system can be generalized to a multiple layer (N-layer) equation:

( P b N
With P and h column vectors of Montgomery Pl hl
potential and layer thicknesses for all the layers: P = :2 h = :2
the system can be written: '
Py hy
for 2 layers
0 0]0
oP 0 1]1
po Oz 83: . .
N -1
\ J

The pressure gradient is the sum of the barotropic mode associated with the gradient of the
free surface and the baroclinic contributions. The latter is equal to g’ multiplied by the gradient of the
layer thicknesses (h) multiplied by a squared symmetric matrix C, which couples the layers together.

= The coupling term between layers for the two-layer model is very simple. Just 0 0 0 1, giving
the two-layer equation from before.

= For an N-layer model, C consists in zeros that correspond to the barotropic mode. Then there
a are a bunch of ones, twos ... etc, all the way to N — 1 in the lower right corner.

These N equations are strongly coupled. One cannot just take one layer and solve for the flow
in this particular layer. We need to know about the thicknesses of every other layer above before
solving it. To solve the system, instead of solving the equations layer by layer, we solve them mode by
mode. This involves finding the eigenvectors of the C matrix and transforming the variables to get a
set of decoupled equations. We will see that in an exercise at the end of the class.
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Single layer

Motionless abyss

1.2.f) The shallow water equations

= Now that we have expressions for the horizontal gradients of the Montgomery potential,
we can put them into the momentum equations. We discretize the stratification and write the
equation set in terms of 3 variables u, vand h.

( For a two-layer system: h
Ou; Ou; du; 0 Ohso
P L e — h h ' 2
gt TUag TGy v 9gy () g5
ov; ov; ov; ad L Ohs
Ui v+ fug = —go-(h 4 ha) —9
5 at "o v Ay +fu gay( 1+h2) =g Oy
oh; 0 a
——(uih; —(vihi) =
5% + 3w(u )+ ay('u )=0
\. J

i is the index that refers to the layer number.

= The momentum equations can be decomposed into acceleration, Coriolis force, and
barotropic/baroclinic modes. For i > 1, there are the baroclinic internal mode contributions/terms.

= The continuity equation is just the same for every layer, as the mass is conserved in each
layer. Convergence and divergence generate tendencies of layer thickness, separately in each layer.

= For an N-layer model, the shallow water equations can be written:
Du; oD oh
1 ’ C
1,i>1

—fvz-:—g%—g

Dt 8z

Du . _ 9D [.oh

Dt +fuz__gay = |:C6y]i,5>1
Oh; 0 0
5% +£(uzhi)+@(mh¢) =0

1.2.g) The thermocline and the abyss

= Let’s consider a single layer model with a flat bottom and a free surface. It could be a
barotropic ocean or a barotropic atmosphere. Just a layer of fluid which flows on a flat bottom.

% Here are the 3 equations that describe the dynamics: two momentum equations, and the
continuity equation.

Atmosphere (p,) Du _ 0] dh
Lomest AN o SUTTO e ok 00
b a—+a—(u)+a—(v)—0
v _ Q) dh t X y
hy Pyuy, v, o + fu=-— ™
z=-H t o

z =0 (lid)

= Let's flip it over, to consider a rigid lid and a
motionless abyss over which the thermocline can move. We
have the same number of degrees of freedom. It is a one-layer
system. The equations remain the same, except that instead of
having the gravity g, we now use the reduced gravity g’.

% Sometimes this is called a one-and-a-half-layer system because you have a fluid below the
active layer which does not move (motionless abyss).
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Motionless abyss

= The N-layer version of this representation (rigid lid + many layers in the thermocline + the
motionless abyss) has a different development equation. The barotropic part has disappeared, as we
cancelled the effect of the free-surface. There is only the g’C matrix term and the C matrix has been
flipped. It does not have zeros anymore and it has one extra baroclinic mode instead of the
barotropic/external mode. All the gravity waves are slow.

N N-1 N-2 .. 1

N-1 N-1 N-2 .. 1

D“i_f,viz_gf C% c=| N-2 N-2 N-2 1
Dt oz |,

1 1 1 1

1.2.h) Thermal wind revisited

= |t is interesting to think of thermal wind balance (geostrophic hydrostatic balance) in terms
of the change of density across the surface.

* Front in the atmosphere:

Let’s imagine a layer boundary, on the left of which ®
there is cold air and, on the right, there is warm air. Density Po, V1
is thus slightly greater on the left. ' %

=, v, > Vg

The thermal wind equation in density coordinates
(as the second derivative of Montgomery potential by x and

Z) is written: 92p v 0z

T = =q — po + Ap, va
0xdp pOpr 9 8z

P cold warm
= This balance shows that difference in the wind
between the warm and the cold layer (Z_Z) depends on the
/
slope of the boundary (?): @ =9 % , Ul —Us = _9 % g’ :f‘ﬂg
¥ O0p  pof Oz p f Oz p Po

% The greater the frontal slope, the stronger the wind shear across it. This is called the
Margules relation.

¢ Geostrophic currents:

= We can also think from an oceanographic point of view.

Imagine you are in a boat, on the surface of the ocean. You can measure the slope of the
thermocline to deduce information about the currents.

% So, you navigate to one place and measure the depth of the thermocline there, then you go
to another place and measure the depth of the thermocline there. You calculate the slope of the
thermocline and then estimate the difference in currents across this density surface, using the thermal
wind balance equation. But it will not give you the actual current amplitude, but only the difference
across the density surface and that is the problem. Often, oceanographers call that the geostrophic
current, but in reality, it is the vertical gradient of the geostrophic current and they do not know what
the actual current is. They would need the slope of the surface, but from a boat you cannot get this
information (you need an altimetric satellite to work that out). In order to overcome this limitation,
oceanographers make the assumption that the abyssal flow is very weak, and thus deduce what the
thermocline flow is.

* Vorticity:

= Usually, when we think of the vorticity of the fluid, we focus on the horizontal flow. The
horizontal vorticity being a vector which points upwards. Vorticity can actually point in other
directions. We can refer to horizontal component of the vorticity which describes the overturning flow.

The thermal wind balance expresses the horizontal component of the vorticity equation. It
does not have anywhere near the same amount of liberty as the vertical component because it is
locked into the strong hydrostatic balance so there is no direct development in this horizontal
component of vorticity.
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Relative and absolute vorticity

GFD1.3: Circulation, Vorticity, and Potential Vorticity

1.3.a) Definitions of Circulation and Vorticity
* Circulation

= The circulation over a closed contour is defined as the integral
around the contour of the component of the flow parallel to the path:

C = fv.dl
dl

% We are interested in how to generate circulation, i.e. to produce a

tendency/time derivative of the circulation (%).

= The time derivative of the circulation is: % —.dl + f d(v.v)

% The second term on the right-hand side is the integral of a perfect differential over a closed
path and is therefore zero. So we get:  J( dv

dt ) dt

= In an inertial reference frame (f = 0, no rotation), if we can assume that the acceleration
. d 1 . L
depends only on pressure gradients (d—: = - ;VP), then the rate of change of circulation is reduced to:

dC dp

dt P
. . d . .
% In order to generate circulation, we cannot have Fp equal to zero. So, if pis a function of p,
the time derivative of the circulation would be the integral of a constant along the contour and will

cancel itself. We thus need pto vary with respect to p in order for the integral to be nonzero, i.e. pnot
a function of p — baroclinic flow.

% In a barotropic flow, there will not be any rate of change of circulation around a given
boundary. Circulation can only be generated by baroclinic processes. This the Kelvin’s theorem.

* The vorticity:

= Using Stokes’ theorem (or divergence theorem), the circulation of the flow can be converted
through the area integral of the curl of the flow bounded by the circulation loop:

with Vv = ————f V)

ox

% The circulation is the area integral of the vorticity, which fits with the definition of vorticity
being the curl of the flow. It is known as &, the relative vorticity and it is the Laplacian of the stream
function ().

What does relative vorticity mean?

Jv Ou

* Imagine throwing a paddlewheel into the flow. Is it going £>0
. . . . —
to turn on its own axis or not? If it turns clockwise then the flow O
has negative vorticity. 2l S
. - . . . e
* In a shear flow too. If you drop something in, it will spin
curvature shear

on its own axis anti-clockwise in this example, i.e. with positive
vorticity.

% Note that, in the rotating frame of the Earth, we get C = [[(V A v + 2Qsing) d4, with ¢, =
(V A v + f) the absolute vorticity. The circulation of a solid body in rotation is 2r?, with () the rate
of rotation of the Earth.
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Vorticity by divergence

= We showed that the circulation cannot change except through baroclinic processes, but the
vorticity can. If there is convergence, the area will change size and shrink. A barotropic flow has to
conserve its circulation, which means that the vorticity will be concentrated into a smaller area. So,
the absolute value of the vorticity must locally increase. We will now see how vorticity can be
generated through divergence (see #GFD1.3b and #GFD1.3c).

1.3.b) The vorticity equation

We are going to derive the vorticity equation, analyse each term and see what it is useful for.
We estimate the curl of the momentum equations, i.e. take the x derivative of the meridional
momentum equation and subtract the y derivative of the zonal momentum equation:

ou ou ou oh
ot "oz '8 _fvf{ax]”m_pz (1) LI
ov ov ov dh dx ay

% The horizontal pressure gradient terms are eliminated in the process (see BEENRORLTS
M on the following page) and this leads to the barotropic vorticity equation:

D [0v Ou dv Ou ou Ov
o (3 a) * 1+ (5 3)| (5 + ) +8v=7n-2)

= The first term on the left-hand side it is the rate of change of relative vorticity. It
contains all the advection terms.

= The second term is the absolute vorticity (relative vorticity + planetary vorticity)
multiplied by the divergence. This is not a surprise as we mentioned that
vorticity can be generated through divergence.

. a . .
* Thereisa p (é) term, that can be brought in the first term to create the rate of

change of the absolute vorticity.

= On the right-hand side, we have the momentum forcing: wind stress and
frictional dissipation. Usually these terms only exist at the boundaries. This
means that vorticity can only be generated by forcing only at the boundaries.

= In vector form, the barotropic vorticity equation can be written:

[% B V'V] Tl = L e R g e —

% The substantial derivative of absolute vorticity (¢, = f + &) equals to absolute vorticity
times the divergence plus the curl of the momentum forcing.

* For non-divergent flow, with no forcing, [2 +v.V (f - 5) = 0, the absolute vorticity is
conserved following the motion. ot

* |If we add some momentum forcing, _ we add a source of absolute vorticity.
% An example is the Sverdrup balance, in which advection of planetary vorticity is balanced
by the wind stress forcing - This is the basis of large-scale ocean theory.

Vorticity can be generated by : —(f+€V.v

Interestingly, divergence also changes the thickness of a layer, which gives us the link
between changing layer thickness and changing vorticity. A convergent flow yields a thicker layer that
will spin-up some more vorticity. This is called the . This term yields
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* There is a term that has been cancelled because we used the Boussinesq approximation
when we derived the shallow water equations. It is a baroclinic vorticity generation term:

% It comes from the generation of circulation associated with the baroclinicity of the flow (see
circulation theorem in #GFD1.3a). This term is important on smaller scales and not particularly
important for very large-scale dynamics (see the following slide for a detailed derivation).

Details of the calculous for the vorticity equation

The vorticity equation Rearranging a bit:
Effectively take the curl of the momentum equation. We'll do it by components: BU+€)+H£(!+E)+U§U(!+E)+w:z(!+€}
g ¢ gruprrvpreultofo=-1% (e D) (R-2i), LRl bd
8 v Bv B Bv 18p dy drd: Oy oz P |Ozdy Oydx
Yor m+u5'-;+v0§ “a +fu=7PW In vector form we take
Rearrange the left hand side assuming we can swap the order of derivatives where V »(momentum equation)
necessary (smooth functions): a
which gives
D . vk
[ i ] Oudul D [(Ou DS+ =-( +OVv-kVurn +;.vaa
lm[ o 2 -EE-@ The term on the left is the material tendency of absolute vorticity.
_22_ i 2 +EQ+.£ 2 mﬁulmmm@limwgm(wm-mmilm,
8!81 By dy drdr  dr \Or The second term on the right s the titing / twisting term.
. The third term on the right is the baroclinic “solenoidal” term.
___ a [fov Jw du B a fou
B dy Oz Assoclated phenomena
| O Do _% mmrmmmormmmty Planetary waves, large scale ocean
Ox 02
of B Ou term: flow over ins, ocean tropical
+ i + RHS Tlngl!w-bnnl-m na--mwmumw convective storms, fronts.
ay [nﬁ .h-} Solenoidal term: flow resulting from local differential heating, sea breeze circulations.
Recall barotropic flow
Terms that cancel have been highlighted, along with y g of in
the derivatives. This leads to B(V‘p):
o (Ou B¢ 06 BE  Of Bwbv Bwdu
m*(az )‘“E)“‘ T Nt Rl a leads to
'we now evaluate the right hand side

DU+8 =~ +OV.

.1 fop a f1\ ap

RHS Eﬁ m,(p);r.

10 (op <t(1)up the "Barotropic vorticity equation”
ar\p) oy

dpdp Opop
drdy Oyoz
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Ertel potential vorticity conservation

1.3.c) Generation of vorticity by divergence

= The continuity equation can be written in the form of fluxes of mass or the flux of layer
thickness determining the rate of change of layer thickness. It can be developed in terms of substantial
rate of change of layer thickness (D /Dt):

Oh 0 oh Oh oh ou Ov
8t+_( h) a—y(vh) at-l—u%—l—va—y—i-h(a—l—%)—o
Dh
i = VY

% The substantial rate of change of layer thickness is given by h times the divergence.

= This is very similar to the vorticity equation (in the absence of momentum forcing, see
#GFD1.3b). D
D T =-(f+ Vv

= We can take advantage of this similarity. In the case of barotropic non-divergent flow (see
#GFD1.3b), we do not have =(f 4+ &)V.v and there is a conservation of the absolute vorticity.

% In order to include this , we need to combine the vorticity and the
continuity equations and eliminate the divergence. Isolated from any source or sink of potential
vorticity forcing, we can write:

1Dh 1

VYDt T T+ Dt(f ¢)

In the absence of

forcing or dissipat;
It leads to another : 2 f +£ Sy ok
Dt h

» For non-divergent flow, the absolute vorticity was conserved following the motion.
In a , the absolute vorticity divided by the layer thickness is conserved on
density layers. This is called the potential vorticity (PV) or the
Itis another way of thinking about how divergence affects vorticity. It is a very compact way
to express the dynamics.
It can be generalized to more complicated flows. For example, PV is conserved in the
Atmosphere on potential temperature surfaces.

The steps of the calculous are:

D (1) =0+02 (1) - 1200039 (2 1 Brvom0

h h Dt

1.3.d) Potential vorticity conservation
= Let's think about a couple of cases in which changing layer thickness generates vorticity.

1) Low-level convergence expands the layer thickness (h),
creating a cold lump between density surfaces. With (f + &) > 0,

to conserve the potential vorticity, the relative vorticity increases t ' o
(f remains constant): Siraloling ot FYRs
+
(f+8& >0, %:cst, h”?= &+ /®\
If the flow was non-rotating before, in the northern — convergence <«——

hemisphere (f > 0), it will develop a positive relative vorticity and
spin anti-clockwise around the cold dome. This is vortex stretching.
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2) A flow encounters a seamount bump at the bottom of the ocean. The layer will get thinner
and by the same argument, with (f + &) > 0 and a constant planetary vorticity (f = cst), there will
be divergence and negative vorticity will be generated.

= If planetary vorticity is very important (it dominates the absolute vorticity) — say a rapidly
rotating planet or very large-scales — then f/h has to be conserved. One solution is simply to not
change h and the flow will follow the isobaths. This gives rise to rotating fluid systems, spinning around
the bottom topography. These are called Taylor columns.

= At large-scales, f starts to vary in latitude with the flow. If f varies, h has to vary, or the
relative vorticity will change and an oscillation in the flow can develop. This a Rossby wave (see
#GFD3).

1.3.e) Conservation laws and potential quantities

= We overview conservation laws, namely mass conservation, conservation of absolute
vorticity of a barotropic non-divergent flow, and conservation of potential vorticity for a barotropic
divergent flow (see #GFD1.3c).

= Potential vorticity is not vorticity. It does not even have the same units! It is
called potential vorticity as if it had a label. You attach a label to a parcel of fluid and let
it move away to different latitudes or different depths changing its relative vorticity as In the absence of
it goes. So, you could take it to the equator where there is no planetary vorticity. But as | forcing or dissipation
it has got this label, its potential vorticity will not change, it will be conserved following
the flow. This means that if the parcel is brought back to its original location, its relative
vorticity will recover its original value.

Consider a dynamics lecturer with an English passport.
Basically, this means he drinks tea. But if he travels to France,
he will drink red wine and coffee. If he goes to Mexico, he will
drink Tequila and if he flies to Russia he will imbibe Vodka. But
he will always carry his English passport, which means that back
at his reference position in England, he will always enjoy
drinking tea.

Similarly, in the atmosphere, potential temperature is
the temperature at 1000 mb. If the parcel of air goes up
(adiabatically) it will get colder, and when it comes down it will
warm up again. It does not conserve its temperature, but it
conserves its potential temperature. Brought back to 1000 mb,
its temperature will be back to its original value.

32 GFD1.3: Circulation, Vorticity, and Potential Vorticity
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In this chapter, we will tackle quasi-
geostrophic theory. On the weather map
on the right, surface pressure lines (isobars)
are shown with black lines. If the wind
follows the isobars exactly, it is in
geostrophic balance. The closer together
the isobars, the stronger the wind. But in
this equilibrium, this pattern is not going to
be transported/displaced. The wind
circulation will remain as it is and never
change. On the one hand, geostrophic
balance is a very good way to describe the
flow, but on the other hand to make
weather forecasts (predict changes in the
flow) we need to include more terms in our equation system than only geostrophic balance. In this
chapter, we will consider the closest thing we can get to geostrophic balance, i.e small departures
from geostrophic balance. It is called quasi-geostrophic because it is almost geostrophic but not quite.

1) We start with an example of steady departures from geostrophy, with a flow that does not
develop in time but in which we can describe the effects of non-linearities and drag (see #GFD2.1).

2) Then, we will discuss ageostrophic flow and the importance of the divergent part of the
flow. We will introduce a new formulation of the conservation of the potential vorticity. We will start
with the assumption that we are on an f-plane (see #GFD2.2) and then we will generalize to the
situation where the planet has some curvature (see #GFD2.3).

3) We will finish by studying various applications of quasi-geostrophic theory (see #GFD2.4).

Quasi-geostrophic theory is very important because it was the basis of the first weather
forecasts. It was the equation set used to predict the weather. The picture below refers to something
called Richardson's dream. Lewis Fry Richardson (1881-1953) was one of the founders of the science
of meteorology. Before the computer era, he had the idea that we could analyze the equations of
motion to predict the weather. But they are so difficult to solve that you need lots of calculations. He
dreamed about an amphitheater full of
people making calculations with their
pencil, paper, and their log tables, passing
information to one another. He was
ahead of his time, effectively imagining a
massively parallel multi-core cluster. He
anticipated the idea that we would solve
the equations by some sort of multitude
of calculations. And it is what we actually
do nowadays, i.e. making weather
predictions by discretizing (in space and
time) and solving partial differential
equations. And, of course, we do this on
machines capable of performing very
many calculations per second (super-
calculators).

1.3.e) Conservation laws and potential quantities 37



Small departure from geostrophy

Sub-geostrophic flow

Super-geostrophic flow

GFD2.1: Steady departures from Geostrophy

2.1.a) Gradient wind balance

= We start by considering small steady departures from geostrophy. Let’s recall the zonal
shallow water momentum equation, with the flow tendency, the advection terms, the Coriolis force,
and the pressure gradient force expressed through the gradient of the layer thickness (see #GFD1.2ef):

ou  Ou au[ oh
—fv=—g

% The two terms on the right are geostrophic balance (outlined in green), in which pressure
gradient force balances the Coriolis force.

= Now, let’s consider time-independent (steady) flow around a circle. In a simple way, the
nonlinear terms represent the local centrifugal force associated with this circular motion. This is
gradient wind balance (without the Coriolis force it is “cyclostrophic” balance).

* On the schematic on the right, the flow is going around a
low-pressure system, a perfect cyclonic motion. There is centrifugal

force associated with this circular motion = something extra
compared to geostrophy.

v <y

% The pressure force (ﬁ~g %) pushes the flow towards the P

center of the low pressure. It is balanced partly by the Coriolis force Low pressure
(5), which yields an anti-clockwise flow. Since the flow is spinning
around, there is also a (C'¢) associated with the
curvature of the flow. Notably, both Coriolis and centrifugal forces
are fictitious, associated with the choice of reference frame.

% In this example, we consider the balance between these
two fictitious forces and the real pressure gradient force. It follows:

V2 dh
f’U+? =g$ =f’Ug

Coriolis term (fv)+centrifugal () is equal to the pressure gradient (g %). The latter is positive

for a cyclone because the pressure is low in the center and increases outwards along the radius. If the
flow were in geostrophic balance, the pressure gradient would be balanced by fv,,.

Since these two forces sum-up (af+ ) to compensate for the pressure gradient force (F)
and keep the flow parallel to the isobars, the Coriolis force does not need to be as strong as if it were
in geostrophic balance. This means that the flow does not have to be as fast as the geostrophic velocity
v,. As aresult, vis slightly weaker than v,. We can just eliminate the pressure gradient in the equation
above and rewrite the equation in terms of the difference between v and v,,. It follows:

v(1+%)=vg

% With fir positive, 1 + fir > 1, confirms that v is slightly

weaker than its geostrophic counterpart v ;.

* In the case of a high-pressure system (an anticyclone), the High pressure
v negative

pressure is decreasing outwards and the flow is going the other way
around — clockwise. There is now a balance between the sum of the
centrifugal force and the pressure gradient force ( +ﬁ) and the
Coriolis force (E). As a consequence, the Coriolis force needs to be
stronger as if it were in geostrophic balance. So, v is slightly stronger
than if the flow were geostrophic (v > v,).
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v
* We can group these two cases: |’U| = L, with R, the Rossby number (see #GFD1.2a).
1 + R,
% If the flow is close to geostrophic, v ~ v, because Ry is small.
22
r P dh
= The full solution to this quadratic equation is: ¥ = —f— S f— +rg—

2 4 dr

For a cyclone, as the pressure gradient is positive (pressure is increasing outwards),
everything under the square root is positive and we can have real solutions. There is no limit
to the strength of the pressure gradient.

— In the case of an anticyclone, the pressure gradient is negative. As a consequence, if
the pressure gradient gets too strong, it leads to a square root of a negative quantity. In that
case, the equation does not have real solutions. So, in the case of an anticyclone, there is a
limit in the strength of the pressure gradient beyond which the equation does not have

‘ solutions: | dh < f27'

dr|~ 4g

There is a limit on the strength of the pressure gradient associated with anticyclones
compared to cyclones. This explains the asymmetry between high- and low-pressure systems
we observed in #GFD.intro. On the previous weather map, there is a very intense cyclone
south of Greenland, associated with very strong pressure gradients, while the anticyclone off
the coast of Spain resembles a flat pattern and is associated with rather weak pressure
gradients. This asymmetry is the result of a steady ageostrophic term, called gradient wind
balance.

% In the full solution, there is a +, which means that in theory, the flow can go the wrong way
around a cyclone. So, it is mathematically possible to find an equilibrium in which there is a clockwise
flow around a low-pressure system, i.e. a solution for which pressure gradient and Coriolis forces are
both directed towards the center of the pressure system, balanced by the centrifugal force.

In reality, it is not really possible. We never observe it, except maybe on very small scales
maybe. Because you have to consider how the equilibrium develops. Starting from rest, a particle will
accelerate towards low-pressure centers, while the Coriolis effect will deviate its trajectory to its right.
The particle will end-up be turning around the low pressure anti-clockwise. So, the natural way in which
these systems come into being favors the normal solutions rather than strange anomalous solutions.

2.1.a) Gradient wind balance 39



Sub-geostrophic flow

Ekman convergence

2.1.b) Boundary friction

= Friction is another way to modify geostrophy in a steady flow, in which we add some drag
to the system.

* Consider a cyclone in the Atmosphere. The pressure gradient force (F) is directed toward

the center (see illustration below). In addition to the Coriolis force (EB), we add a () that
points in the opposite direction to the flow, so this drag and Coriolis forces balance the pressure
gradient force. For that to be possible, the flow has to converge into the cyclone. This is sub-
geostrophic flow. If the wind converges towards the center of a cyclone, the mass will be gradually
accumulated and the cyclone will decay as the low pressure fills at the surface.

But before this happens, the low-level flow (which experiences this drag and converges) will
naturally give rise to upward motion by conservation of mass. We observe ascent in low-
pressure/cyclone centers. This explains why a depression is always associated with cloudy weather
(upward motion=condensation=clouds). Conversely, it is sunny in an anticyclone, associated with
super-geostrophic (descending) flow. It is the opposite effect, the wind is blowing outwards and the
flow experiences downward motion (=evaporation=clear skies).

Co

Sub-geostrophic
ascent P

Co

Ekman pumping

v

T

* Let’s focus on the Ocean and consider exactly the same diagram.
= Instead of being driven by a pressure gradient force, the flow is driven by surface wind-
stress (T). It is the stress which is acting on the upper surface layer of water.
= The same surface ocean current vector v, directed at 45° from the wind forcing.
= |t is being pulled back by friction with the water below, i.e. the drag (V).

= The Coriolis force (Ef) is as usual perpendicular to the flow.

> We have the same balance but this is now Ekman convergence: wind-stress driving the flow,
balanced by the Coriolis force and friction. It will be convergent and that will lead to downward motion
in order to conserve mass. This is Ekman pumping. As each layer exerts a stress on the layer below,
the movement of the upper layer will produce a stress on the next layer, creating the Ekman spiral.

In the case of the atmosphere, it is the slowing down of a flow that has already been
established, while in the case of the ocean this is how the flow is forced.

= But now we need to move away from these anecdotal cases and put together a system with
advection and time dependence that is almost, but not quite geostrophic.

We do this essentially by separating the flow into a geostrophically balanced, nondivergent
part, and the ageostrophic plus the divergent parts as a small perturbation. This small perturbation
allows prognostic equations that lead to the evolution of the flow.

40 GFD2.1: Steady departures from Geostrophy



Linear ageostrophy

GFD2.2: Quasi-Geostrophic Theory I — the f-plane

2.2.a) Ageostrophic perturbations

= The goal is to build a theory that is close to geostrophy but not quite geostrophic.

% We separate the flow in its geostrophic part and
ageostrophic part, and we assume that the ageostrophic part is a
small perturbation. We start with the shallow water momentum
equations in a single layer (see #GFD1.2f):

Du Oh
D 10 T95, =0
Dv oh

Dt +fu+gay — 11,

D a D ad ad 0
With — the substantial derivative operator (—+advection): § — — 4+ u—+v—
bt at Dt ot ‘oz dy
= What would happen if we just assume the flow is geostrophic (v,) and we substituted it
into the momentum equations?

g oh _goh

U, =—=—, UV, = =—
7 foy ¥ fox
% We put it into the definition of the substantial derivative, using the geostrophic flow for

the advection terms: 2 . .Dg o . o 4 0
Dt Dt ot Yoz oy

¥ If we also put the geostrophic velocity (v,) into the Coriolis part
instead of using the full flow (v), this gives:

oh
Dtug fvg-l-ga =0

% The two terms on the right cancel each other and the geostrophic
flow is non-divergent. This leads to a null tendency, which was expected as
geostrophy is a balance. So, we went one step too far.

= Instead, we make sure that the equation remains linear in terms of the ageostrophic part
of the flow (v, = v —v,), i.e. vy, contribution in the nonlinear terms (squared terms) will be small
and we are going to neglected them, making the equations easier to solve. So, the full flow is used in
the linear Coriolis terms (v) and we advect with the geostrophic flow (v,). This is consistent with the
idea that the ageostrophic part of the flow is small.

2.2.b) Quasi-geostrophic f-plane vorticity equation

= Using geostrophic flow in the non-linear and tendency terms, and keeping the full flow in
the Coriolis terms vields quasi-geostrophic momentum equations:

D,

—u, — fv+g—=0 (1

gt oS gg-’fb (1) f-plane
on f=cst

d
% As in #GFD1.3b, the vorticity equation is derived by cross differentiation: E (2) - @ (D

= This process eliminates pressure gradient terms, and we get:

Oug =~ Ovg ou Ov df
at«fg—l—uga 55,—|—'vg6 £g+£g( +6 )—I—f( 6)4—1)@—0
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f-plane & equation

Linearization of h

f-plane continuity equation

= We obtain an equation for the development of the geostrophic vorticity. Because we have
. d , .
assumed that we are on an f-plane (f=cst, i.e. é = 0), h is a stream function for u, and v, and the

divergence of the geostrophic flow (V.v, = 0 on an f-plane) remains zero. The equation simplifies:

D
‘B%(f +§g) = _fv-V

% The geostrophic tendency of the absolute geostrophic vorticity is given by the divergence
of the ageostrophic flow.

%, % If f varies with latitude, there is a divergent part to the geostrophic flow (see #GFD2.3).

2.2.c) Continuity equation

Here is the continuity equation in the form of the flux of layer thickness h (see #GFD1.2d):

oh 0 0
— + —(uh) + —(vh) =0
i CO R By( )
It can also be written as the substantial derivative of the layer thickness (see #GFD1.3c):
Dh
— 4+ hV.v =
Dt +hV.v=0

% As for the momentum equations (see #GFD2.2b), we replace the substantial derivative
(D/Dt) by the geostrophic operator (D, /Dt), and expand it. The continuity equation is then written:
oh
- +Vg.Vh+hV.v =0
ot
% hV.v is not a linear term, because h depends on v. So,
for consistency :

h=H+0dh, O0h<H

% We can now the ageostrophic flow AV.v by assuming (for this term only) it is
approximated by H (a constant) times the divergence of the ageostrophic flow ( HV.v ). This is the
equivalent to the approximation: vgh ~ vg5h +vH

oh
We obtain the following continuity equation: — 4 vg_Vh +HV.v=0

at
= It can be written as the geostrophic substantial derivative of oh:
O Sh4 vy Voh+ HV.v =0 or 225h4 HV.v =0
e . V= or —— V=
g’ TV Vot AV Dt

% To impose some linearity in the ageostrophic contributions, we had to make a strong
approximation to the mean stratification: the mean stratification, represented by the layer thickness
(H), cannot vary in the horizontal.

f

D
= Finally, we can rewrite the continuity equation as: T F;&h =—fV.v

42 GFD2.2: Quasi-Geostrophic Theory | —the f-plane



f-plane QG PV conservation

2.2.d) Quasi-geostrophic potential vorticity

= As in #GFD1.3c, we combine the vorticity (see #GFD2.2b) and the continuity (see #GFD2.2d)

equations and eliminate the divergence, as follows:

D, oh
Dt (fH) i(f‘f‘fg)

D oh
“, We obtai tion principle: —2 ¢ f+ &, — f— » =
e obtain a conservation principle + {f &g f } 0

H

= This is the conservation law for f-plane quasi-geostrophic potential vorticity:

gt g — 0 f -+ gg fa—h- q is conserved following the motion

= It is not quite the same as the Ertel potential vorticity (see
#GFD1.3c) because there is a linearization of the stratification. It does not
even have the same units as the potential vorticity, but the two quantities
can be related:

= S(_(f-Hf)(H-:Sh)=(f;€)(Hf6h)
- (50 Gma) = G -7)
S~ G-

h A2

% As H is constant, with the linearization of the stratification, we
obtain the conservation of the following quantity:

q=f+E- -6

= Then using scaling arguments, i.e. the Rossby number is small, the
term involving relative vorticity is small compared to f.

o< || 7L <<1=>f>>£, E=§
% We can thus neglect the term on the right and recover the quasi-
geostrophic potential vorticity formulation.

In the absence of
forcing or dissipation

= So, this linearization of the layer thickness is a surprising consequence of our insistence
that the flow remains close to geostrophic. In a vertically continuous framework it means that the

stratification is uniform in the horizontal (see #GFD2.2b).

2.2.d) Quasi-geostrophic potential vorticity
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Adimensionalization

Relation between scalings

2.3.a) Adding curvature to the Earth

#GFD2.2 was pretty straightforward because we assumed that f was constant (f-plane). But
many important dynamical phenomena depend on the variation of f with latitude (Rossby waves, for
example, see #GFD3).

% On an f-plane, the geostrophic flow is strictly non-divergent, while on a planet with some
curvature, the geostrophic stream function that contains f is not a proper stream function. It has
departures associated with the divergent part of the geostrophic flow. So, allowing f to vary will
complicate the theory as we have to deal with the divergent part of the geostrophic flow as well as the
ageostrophic flow.

= To proceed, we will derive the quasi-geostrophic equation set more formally than in
#GFD2.2. We will do a formal expansion of these perturbations about a small parameter. We will
naturally choose the Rossby number (see #GFD1.2a) for this small parameter.

2.3.b) Derivation of the quasi-geostrophic shallow-water momentum equations

* We recall the full 1-layer shallow water (see #GFD1.2f) momentum and continuity (in its
divergence form, see #GFD1.3¢c, #GFD2.2c) equations using a vector notation:

Zt +v.Vv+ fkav+gVh =0

oh
a-l—vVh—l—th 0

* We now non-dimensionalize these equations.
- We use typical scaling values of length (L), speed (U), and time (T), to obtain non-
dimensional variables noted with primes:

¢ =z/L, v =u/U, t'=t/T

- The layer thickness h can be written as h = H + §h. We non-dimensionalize the variations
of the layer thickness (6h) by Ah a quantity typical of variations in the layer thickness (Ah,
% not H), as follows: i’ = 6h/Ah

% We substitute these non-dimensional variables into the shallow water equations, leading to:

U v’ U2 L . Ah_

f@ + —v.Vv' + Ufk,\v +QTV?? =0 (1)
Ahon' U U p ,
Taw T Ah V' + L(H—I—Ahn )WVvi =0 (2)

= We obtain (messy) equations with scaling values in front of each term, in which the non-
dimensional terms with prime (v’ and 1) are of order 1.

* So far, we have not made any assumptions or approximations. We now introduce the quasi-
geostrophic assumption by requiring that the relationship between the basic scalings (L, U, T, and
Ah) conforms to geostrophic balance, i.e. fw ~ gVh. In terms of typical scalings (with f; the value of
f at a reference latitude), it follows that:

Ah
Ufor~ 9

%, We obtain an expression relating the value Ah to the other scaling parameters:

UfoL
p (3)

Ah =
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Burger number

* If we now define the Rosshy number (see #GFD1.2a) and the temporal Rossby number and
acknowledge that they will be small in the quasi-geostrophic approximation (see #GFD2.3d and
#GFD2.3f). Note that if U = L /T, these two parameters are the same.

U 1
- (@) = (5)
fOL foT
= For simplicity, we now remove the primes in the equations and rewrite them using our new
scaling parameters (sand &7).

% For the momentum equation, we divide (1) by f,U, replace Ah with (3), and then use (4)
and (5). This leads to:

€

ov g
er— +ev.Vv+ —k v+ V=0
ot fo
% The last two terms constitute a non-dimensional form of geostrophic balance. The
advection and development terms have epsilon in front (v, u, and 7 are of order 1).

% It is worth mentioning that we only made the hypothesis that the scales of the motion
conform to geostrophic balance. We just rewrote the equations using the £and & scaling parameters,
we but have not yet assumed that these parameters are small. This will be done in #GFD2.3f.

2.3.c) Quasi-geostrophic continuity equation

= For the continuity equation, we multiply (2) by L /UH, replace Ah by (3), and then use (4)
and (5). It follows:

L’fg\ on , (L*f
€r ( oH ) E—I—e( oH ) (vVn+nV.wv)+Vv=0

% The non-dimensional constant that appears in brackets is the inverse of the Burger
number (Bu~?, see #GFD1.2a).
- Buof order 1 means that Coriolis term and gravity/buoyancy effects are comparable or
that vorticity advection and vortex stretching are equally important (see #GFD5.5a).

- Bu of order 1 means that we are dealing with typical synoptic systems, which can be
amenable to quasi-geostrophic analysis.

- It is also associated with the length scale (L), such that Bu™! = LZ/Lﬁ. (Lg is the Rossby
Radius, see #GFD1.2a).

% For simplicity, we call it F in the following.

= We use F in the continuity equation and it writes:

eTth—n +eF (v.Vn+nV.v)+V.v=0

Again, we have not made any further approximations than the scales of movement conform
to geostrophic balance (1%).

% But we can already see from these two equations that to zero-order in our Rossby number
parameters, the flow is geostrophic and non-divergent and that first-order terms concern advection
divergence and time development.
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B-plane

2.3.d) The assumptions of quasi-geostrophic theory

= Before doing a formal expansion in the Rossby number (see #GFD2.3f), we will set out our
assumptions one by one:

08
foL

* Assumption 1: the Rossby number is small, i.e. close to geostrophy: € K 1 withe =

* Assumption 2: the temporal Rossby number is also small. We consider that €7 = €

% This means that scaling for velocity (U) is consistent with our scaling for length (L) and time
(T), i.e. the velocity is just the flow velocity (as opposed to wave velocity which could go much faster).
This results in filtering the very fast surface gravity waves (ex: tides).

* Assumption 3: Buoyancy/gravity-stratification effects are as important as the Coriolis effect,
i.e. Bu is of order 1, and length scale (L) is close to the Rossby radius. This means that the coefficient
F in the momentum equation (see #GFD2.3c) is of order 1.

* A consequence of assumption 3 and assumption 1is that departures (6h) from standard layer
thickness (H) are small.

% This is the linearization of the continuity equation and of the quasi-geostrophic potential
vorticity. NB: In a continuously stratified case, this is equivalent to saying that Brunt Vaisala frequency
squared (N?) varies in the vertical but not in the horizontal.

L
* Assumption 4: Scales of motion are small compared to the radius of the Earth: — < 1
Tﬁ

L
% In fact, we assume that — = € is the same ¢ as the Rossby number. We keep only one
small parameter &. e

% NB: Assumptions 3 (about the stratification) and 4 (about the scale compared to the size of
the planet) have nothing to do with geostrophy. They are not the result of our intent to derive a system
almost but not quite geostrophic. But they are necessary for our expansion to be self-consistent.

2.3.e) The beta effect

= Assumption 4 (length scales of the flow are small compared to 7,) indicates that the
variation in f is non-zero but small.

= A ] pansion of f = 2()sin ¢ about a reference latitude (¢b,) gives:
df il T i y'L
E — =l =k =100 2Q) o =
ey oVl 2 T kel el o
. . . o Sy 2cosdo Ly
% It can be written non-dimensionally (y = y'L, see #GFD2.3a): = 1+ 20sindo rey +
=1+ cotgy—y' + -

Te

= At first order, with 8" = cot¢, and LR g, it follows that: i ep'y’
re  fol fo
% It represents the variation with latitude of the Coriolis parameter f, with a small parameter
g, in front of the § term. We introduced the /#plane, i.e. the function for fin x — y space is linear and
describes a plane.
= We cannot get too close to the equator where cotgpy — oo .
It is thus an extra-tropical beta approximation.
= |f f = f,, itis an f-plane (as in #GFD2.2).
= Fplane is only in functional space, not in physical space.

= In the following, we are going to eliminate the prime in the notation (as in #6FD2.3c).
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Zero-order

Continuity

2.3.f) The expansion

= Let's do the expansion. Using assumption in #GFD2.3d, we rewrite the momentum
(#GFD2.3b) and continuity (#GFD2.3c) equations as /fplane (#GFD2.3e) non-dimensional equations,
in which some terms are multiplied by € and some terms are not:

eaa—: +ev.Vv+ (1+eBy)kav+Vn =0

GF% +eF(v.Vn+nV.v)+V.v=0

% We expand the 3 variables (u, v and 7, the departure of the layer thickness from the
standard value) in increasing powers of £ (a zero-order part (s°)+ &' x a first-order part + & x a second-

order part, etc...): ¥ — v levy 62V2 .
n="no -i-fn]_ +62ﬂ2 + ...

% We then substitute them into the equations. We will sort the terms in increasing order of
epsilon. We will focus here on zero-order terms and then on first-order terms (see #GFD2.3g).

For example, vy is a zero-order term in the last term of the continuity equation, while it is of

first-order in the second term of the momentum equation. Likewise, &v; is a first-order term in the
last term of the continuity equation, while it is of second-order in the second term of the momentum

equation.
Zero-order: All the terms without any gin front. At zero-order, the momentum
equation yields geostrophic balance, while the continuity equation informs us that the
flow is non-divergent:

kavo+ V=0 (1) V.vg=0 (2)

% At zero-order, there is no development. The geostrophic non-divergent flow
can only change with time if we include some first order (divergent) terms. The
continuity equation is the equivalent of the momentum equations as curl(1) gives (2).

1jo acts as a stream function for the zero order (non-divergent) flow (1, vy):
= Ono . Ono
|| emm— O —_ ——
oz’ Ay
% It does not represent the geostrophic flow, it represents the part of the geostrophic flow
you would have if f were constant.

Vo

2.3.g) First order in &

= First-order is what is left over when you select terms that have just & in front of them (no
second-order or higher-order terms). It follows that:

5 X )

% +vo.Vvg + kv + Bykavo + Vi =0 (1)
d

F% + F(vo. Vo +1m0V.vo) + V.ovi =0 (2)

= In the continuity equation (2), the second term is zero because the zero-order flow (vg) is
perpendicular to the gradient of the stream function (V7,). And vg is non-divergent, so:

T

Tl .

The rate of change of the zero-order layer

thickness comes from the divergence of the first order flow.

Vi
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Vorticity

F-plane QG PV conservation

Jacobian notation

= We form the first-order vorticity equation by taking the curl of the momentum equations
(1) ;—x (y — equation) — % (x — equation), as in #GFD1.3b and #GFD2.2b. It provides an equation

for the vorticity of the flow (£, curl of the velocity):

0
% + & V.vo +v0.VE& + V.vi + ByV.vo + Bug = 0

% The second and fifth terms are zero because the zero-order flow (vy) is non-divergent.

= We then combine the vorticity equation with the continuity equation to get rid of the first-
order divergence (V. v;). This provides a conservation principle:

o _ _ om0
ot +vo.V& + Bvg = —V.vy = ot

a
% Then taking into consideration that a(ﬁy) =0, vo.V(By)=pPvy, vo.Vp=0
and using % + v,V as the substantial derivative, we can factorize the equation, so that:

9
ot

(By + &) +vo.V(By+ &) =F [% + Vo-vﬂo]

In the absence of
%, It yields the conservation (following the flow) of the (non-dimentionalized) forcing or dissipation

quasi-geostrophic potential vorticity:

[% + Vo-V] [By + & — Fnol =0

2.3.h) Quasi-geostrophic potential vorticity on a f-plane

D —
D—t[ﬁ)""fo_F??o] =0

= If we now express the zero-order (non-divergent) flow (v;) in the advection terms in terms

of the stream function 1, so that vy = % and ug = — Z—T (see #GFD2.3f), the substantial derivative
of the potential quasi-geostrophic vorticity (q) is written:
Dg _dq _0q dnodq 0dnodq
—=—+v,.Vq=—+—F————
Dt Ot adt oOx dy 0dy dx

= Recalling that the vorticity is the Laplacian of the stream function (see #GFD1.3a), we can
write the prognostic equation in terms of one variable only, the stream function (774):
0 87’]0 0 37’]0 0

R— — — — o— — 2 —_— —
5 T oz 5y oy ow| PV VM~ Fno] =0

= This leads to an expression of conservation of (non-dimentionalized) quasi-geostrophic
potential vorticity g, which can be written like this:

0
&q-FJ(T]O,Q):O with q=ﬁy+V2ﬂ0—Fﬂo

%, Jis the Jacobian, i.e. a compact way of expressing advection, when you have a non-divergent
flow, in terms of the stream function and the quantity being advected.

= What we learned from this is that we have just one variable in this system. For the complete
shallow water equations, we had three variables (u, v, and h, see #GFD1.3d). For the quasi-geostrophic
theory, we can express everything in terms of 175: one equation - one variable. This is rather useful to
perform weather prediction.
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Dimentionalizatio

Fplane QG PV conservation

= This is all non-dimensional, so we now put the physical values back in (i.e. the opposite of
non-dimensionalizing the equations, see #GFD2.3b) and dimensionalize the equation. This leads to the
dimensional quasi-geostrophic potential vorticity: f
2 0
q=pPy+ V-

% i.e. fterm + relative vorticity + vortex stretching term.

= If we define the quasi-geostrophic stream function as: 1 = f—5h it follows that:
0
In the absence of

The conservation of forcing or dissipation

q=6y+V2¢—(fg

1
)w o =Byt -

gH
0
with the as before: e +J(¥,q) =0
ot
As fo remains constant, it can be included in the definitionof q. [ % Rossby radi
It will not change the conservation principle. e
2.3.i) Continuously stratified fluid
= Here, we provide the for more

realistic fluids, with continuous (horizontal and vertical) variations of density.

% Up until now (#GFD2.3a-h), we have worked with discrete shallow water layers, each of
which being homogeneous (constant density). The extension to continuous stratification requires that
we abandon this formulation and reintroduce a vertical coordinate (see m on the next pages).

= The vorticity remains the same:

Oq P

% 1t is the

= In a flow where the stratification varies with the vertical and in which also the Coriolis
parameter varies with latitude (f#-plane), the stream function is defined in terms of pressure and f,

h that:
such tha _ Po % Similarly, ¥ is the stream function for the

psfo non-divergent part of the geostrophic flow.

% The density varies in the vertical and horizontal, such that there is a reference value of
density and a perturbation, function of (x, y, z, t). The expansion around a small Rossby number and
the derivation of the full quasi-geostrophic equation set are very similar (detailed in the

-

e For the quite realistic anelastic case (see #GFD1.1c) which allows large variations of density
with height, accounting for the static compressibility of the atmosphere, the quasi-geostrophic
potential vorticity is: f )

2 fo oy
=By +V +——
qa="Py P 52 \ NP,

% It is the same as before: the Sy term, the relative vorticity, and the vortex stretching term.

The latter is more complicated and depends on vertical gradients of the stream function.

® This definition can be simplified in the case of the Boussinesq approximation in which the

reference density {po) is constant (independent of z, see #GFD1.1c). In this context, the density

variable between the vertical derivatives cancels. It follows that: f B’I,D
0

q—ﬂy+V2'¢/)+— (Fa)

= The result is once again a , which
is defined entirely in terms of a stream function, so one equation, one variable.
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Derivation of the PV equation in a continuous

y stratified fluid

1V) EXTENSION TOA CON‘I'WUOUSLYSTRATFFIED FI.U!D
(with non-B static comprossibility off

Three dimensional scalings for a compressible, baroclinic stratified fluid:
. UH L
oy=—L, wo=U z—-H, waT. tA.‘!7
p=ps(z) + plz,y. 5,t)
p = p.l2) + plz,y, 2.t)
Geostrophic scaling for pressure

o 128

50
p— foULp.

Hydrostatic scaling for density
.

= =1+edy

where

2
f= '*’L{' = cot

as belore.

No.

' uU? v LoV .H'L3 1 V'
— V.UV - A s / .
o L+vV L+u 7 +]U‘kv p(]+:Fn’)LbL‘rw

= =UfuVp'(1 = Fp)
(1o first order)
Divide by Ut drop primes

v v £ o i1
(a’cv‘V‘I-#zuaﬁ»(I-fdy)knv— (1 = eFp)Vp

N “- il

dp dp dw
a+v‘vaua+pV.v+ﬂE—|]

p.d'b; +p,¢!- V.9 +p¢}-LH d‘{,

“’ '[a“'} +p.(l+¢Fp')[L (Vv +ol',)] =0

L a3

X e =

U

B0 o s O ([ 1 8p, ot .,
d-m,+d'v.Vp +eFu' 5 + Hw' o 4[l+n‘p](v‘v . a:_) =0

Note that the expression in square brackets resembles N, and note that zis
dimensionless.

9 9ps

Fu
P 02

then the fourth term above becomes

(HS”) M
=
g

This is the non-Boussinesq term.
So dropping primes

.r(% wv,ww:‘;") o HTsn +(1+¢Fp) (V.v+%':') —v

of
v=vgtev+
w=1wp+ew + ..
P=potep+..
P=po+epr+ .

Momentum equation lo zero order
Geostrophic balance

kavp = -Vm
and

Vv =0

Continuity equation to zero order
HS?

B
wy + V.ovg + . P8
9 az

mmnm‘mw“nmmuumwmmuwm Al zero order,
wvertical motion can only be generated at the boundary.

Assume that the botiom vertical velocity

50
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wy =0+ ewy + ...

(remember, for the atmosphere:

(this is assumption (3): weak orography) lr.,.«-E: —"l:”f‘l-vsxlo‘m:mkm
Integrate upwards, this implies 0
= po w00
everywhere, 0 o
w=cuwy +.. )
So the vorticity equation is now
Momentum equation to first order
o o 2y €0+ vo V(B + 60) = Ty 4 20
ot vo.Vva + Kavy + Bykave + V1 — FpoVpo = 0 ?
Using
K.V 1 (this) — _ 29.
ps Oz,
: the right hand side can be written
A po Opo  8po Opo
°+5“VVo+vnV&.+Vv,+ﬂ|ern+ﬂvo— Ea-wz] =0 -li(pm)
w8z
‘Second and fifth terms by of the zero order flow, and the last Pt
torm can be rewritten using geostrophy of the 2ero order flow 10 give We can evaluate the right hand side using the ...
%E‘_u +vp. Vo + Vovy + Bvo + Fvo.Vpo =0
m =
Continuity equation to first order ﬁ-ﬂ
F% +Fvn-Vﬂn+(£)wu+V-Vl+%=° =0
s 0= 0,(1+eF(fy+...)
Note that the second and fourth terms have just appeard in the vorticity equation. S0 we
can ebminate them by combining the comtinuity and vorticty equations: """""’""‘W“
U o¢" HU o, UH
%+vn.v&+ﬁvn=—é‘v...vm—v.v. TaecFtat v'va'cn +uf—¢n R T et
a, Hs? B, . a2
L Lo 2
_Fﬂt ( g ) ™ (F(g+v.V0+wg)+w¥-0
Al this stage we note that for synoplic scales F ~ 0.1 so we neglect the first term on the
right hand side. This is because we have set At zero order we recover
f?L’ 2 wy =0
W_F
e =0,(z)(1 + eF0)
F(%+vu-?ln)+m—-0 and define
3L pagHl
- )\cm(W*'“w") = b (p. )P"
[ == ASIDE: So where does this come from 7
Do 8 Its needed Io ensure
g’ a8 _1dp _dp
¢ vp »p
S0 e
o= R ["*] e
Cy
Wy by o ke verbcl darvubve e chie by . o excharge duetios )
1 8( = [f:,‘!.'g (ﬂ-‘n)] integrafe this, gives
a0z P Dt |H%p, 0: \ N?

and we can use this o rewrite the vorticity equation as

% [ﬂr+&+{f,ii ”"")] =0

Now we have one last thing 1o do...
Hydrostatic equation
b=
P=ps+popfoUL
P = ps+ popeF
a
s Pops) = —pops
or

== {nw)

P Bs
Now, define

logd. = —]cgp.—logp.+euﬂt

but

8. =0,(1+eFly)
Pe = pu(1 + eFpu)

pe=pat pufol L = (14 UL )

n (22

The inner term in brackets is the reference

hydrostatic scaling, ~
zmn-whs- p andp” muwmmuumm

log(l + ex) = ex

— Fly = _lrd'" (’:‘p')pq —eFpy

2.3.1) Continuously stratified fluid
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S this into the

1 H
,,,=_,,,+;(& =

Ps

(106 1

""E“’" P Oz

|

(

Ps

)

18 o
q=3y+V’U’+EE (%p.a)

This is the full quasi-geostrophic potential vorticity for a compressible stratified fluid.
Note: for stratified Boussinesq fluids this form reduces 1o

[From the reference hydrostatic relation, the second term in square brackets can be written
19p,

T
but this is just

e om(a %)

and the term in brackels

=—~ =~

[ 9
50 we can wrile the perturbation hydrostatic relation in terms of perturbation potential
ftemperature:

5

=

B

. put this back into the vorticity equation:

Dy JE? 8 (p. B\] _
BI[””*‘-’fnT,,.a:(ms:)]-“

This is the non-d quasi-geostrophic: potential vorsicity.
Redimensionalise:

_ Jod (P @ (o
=areor 25 (55 (2))

® o

pafo

dz

g=0y+Vi+ 3 (%:—f)

(this is OK for the ocean).

q s conserved lollowing the flow:

M I =0

Everything is represented in terms of one prognostic equation in one variable (the
streambunction).
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2.3.j) One variable to rule them all

= In quasi-geostrophic theory, we obtain only one variable in the system, the quasi-
geostrophic stream function 1, that rules them all.

&, Everything can be expressed in terms of 1 in the quasi-geostrophic set.

* The horizontal velocity can be expressed in terms of the stream function (it is the definition
of the stream function), so:

__ o W
oy’ T Oz
* The pressure is a stream function for the non-divergent geostrophic flow (see #GFD2.3i):
P’ = pofoy)
* The density is the vertical gradient of the stream function (hydrostatic balance):
r— _Pofod¥
g Oz

* The vertical velocity is material tendency operator applied to the density, so it can also be

expressed in terms of :
o oY
Y= N2 [6t +u.\7] 0z

= With the quasi-geostrophic set of equations, it is easier to make predictions following this
procedure:

r
The flow field 1/'° (ex: weather today) constitutes the initial conditions.

1) Compute the three-dimensional field of potential vorticity

g = By + VY +fn(¢,)

2) q is conserved with the flow. But at one location, g changes as it is blown around by
the wind. Thus, the next step consists of computing the advection terms and
integrating the prognostic equation forward in time to find the next state for g (gto+1):

dq
— . =0
ot +v.Vq

In the quasi-geostrophic set, time steps can be quite long (half an hour or so) because
gravity waves are filtered and nothing really fast is going on.

3) Invert the elliptic operator g = By + V21 + fn(v.) to estimate the stream func-
tion. This provides a new flow field 10+ that will constitute the initial conditions for
the next time step.

% Using this prediction system, you can do it 48 times in a row. This will provide weather
forecasts for tomorrow. The first weather predictions were done with the quasi-geostrophic set.

GFD2.4: Quasi-Geostrophic Theory III — Applications and Diagnostics
2.4.a) Development

= In order to predict the weather without taking into account the potential vorticity, one can
still consider directly the time development of 1, i.e. pressure (focusing on pressure centers for
instance). This means that we can remain in the quasi-geostrophic framework without going through
this inversion process for the potential vorticity.
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Elliptic operator

% Consider the development equation for the potential vorticity, in which the formulation of
the potential vorticity is developed in term of 1 (slightly simplified below):
0 f? f?
(VY +f+ 5 +v.V (V% + f+ =0
at Il)[) f N2 /d)zz ’z]b f Nz wzz

= We can rearrange it if we assume all the functions are well behaved (differentiable, etc) and

that we can swap over the order of the derivatives. Instead of having > of a big elliptic function of ¥,

. a .
we have a function ofa—lf , and we put the second term on the RHS and develop it, so that:

A £ 0 (v
(v2 n m@) 5 = vV (V% +f) - N2 35 ("'VE)

% The two RHS terms control the tendency of the stream function, and by extension, they
control the pressure development. Pressure development will thus be determined by 1) the absolute
vorticity advection and 2) the vertical gradient of the horizontal density advection.

So, if the sum of their contributions is negative there will be low-pressure development.
% Except that there is an elliptic operator in front of the tendency term.

% Let’s assume that the functional form of i is wave-like in (x, ¥) and it changed sign once in

the vertical (first-baroclinic mode). The effect of this operator (on this simple wave-like structure) is a

multiplication by a constant (> 0, involving the wavenumbers) and more importantly a change of sign.
Y o sinlz sinmy cosmz/H

= In this context, the local rate of change of i, or change of pressure is proportional to the
absolute vorticity advection and the vertical gradient of the density/temperature advection.
ol 2 f* o N
L x +v.V(VH+ ) + 1o vyl
ot (Vi +§) N2 09z 0z

2.4.b) Advection of absolute vorticity

0
= Advection of absolute vorticity is proportional to: a—’f X V.V(V2¢ + f)

We study here an eastward flow with wave-type structure (see below), such that:
Vi = —(I* + m*)y

% In the advection of absolute vorticity, there are two terms: one associated with the relative
vorticity and the other associated with the planetary vorticity.

* Advection of relative vorticity — short waves:

) In the ridge, the flow is clockwise and the relative
ridge vorticity is negative, while in the trough, the relative

L e . a
E trough vorticity is positive. Inregion l: v.Vé > 0 = a—lf > 0.
L
I i~ % With the flow going eastwards, the zonal
‘ advection of relative vorticity will send troughs and

ridges eastwards. This is the case for short waves for
which & dominates.

* Advection of planetary vorticity—long waves:
d - .
As d—i > 0, the meridional advection of planetary
vorticity is controlled by the northward southward
oscillation of the flow. It results in the opposite effect to

the relative vorticity advection and will send troughs and
ridges west. These are long Rossby waves (see #GFD3).

54 GFD2.4: Quasi-Geostrophic Theory Ill — Applications and Diagnostics



= In conclusion, there is a competition between the advection of planetary vorticity (the
Rosshy wave term) and the advection of relative vorticity (the synoptic-scale term). Both will influence
the way in which the pressure (weather) will develop.

2.4.c) Vertical gradient of temperature advection

= The rate of change of the stream function, and by implication the pressure development, is
proportional to the vertical gradient of the temperature advection:

oy 0 o _ Opo

The question is: “What is the vertical variation of the temperature advection?”

In the example on the side, we study an
eastward flow going through the juxtaposition of cold
and warm air masses in the x-direction. These air masses
are associated with positive and negative zonal gradients
of temperature which decrease with height. For
instance:

In region A, there is cold advection at low-level

250

500

750

(v.V8 > 0), then 9(v.v6) VB) < 0 and a trough develops.
1000 v In region B, there is warm advection at low-level
9(v.ve) VB)

(v.V@ < 0), then > 0 and a ridge develops.

Eastward flow v

2.4.d) Vertical velocity: quasi-geostrophic omega equation

= With the quasi-geostrophic set, it is also possible to make diagnostics for weather analysis,
in particular, to diagnose the vertical velocity.

* We could deduce the vertical velocity by integrating the continuity equation:
ow ou N ov
0z or Oy

. . s " a a .
% This is mathematically sound but it is ill-conditioned. ﬁ and i are large terms which have

cancellation between them (small differences between large terms). Such calculation for vertical
velocity is not numerically accurate for real data sets.

* The quasi-geostrophic system to the rescue . From the continually stratified version of
the quasi-geostrophic theory (detailed in #GFD2.3i), the vertical velocity can be written:

_ iapo dpo
W= B“(ataz T Ovaz)

% We eliminate the tendency term by estimating the Laplacian of this formula and using the
vertical gradient of the vorticity equation:

v2 (EBPO) _ _v ( vo. vap0> B;lvzw

dz Ot 7]

2
S AR+ v+ = Fo L 5 v (S 0) ~ T8 D v+ &)
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= Equating the two RHS y|elds a diagnostic equation for the vertical velocity in terms of the
geostrophic stream function (§y = V2 Do). It is called the

(B9 + 52 ) 1 = g0 TG+ ) =5 (w0 Vapo)

0

% It is written as an elliptic operator on the vertical velocity, equal to the summed contribution
of two terms.
= The first RHS term is related to the vertical gradient of the absolute vorticity advection.
» The second RHS term is the Laplacian of the temperature advection.

% This is the other way around to #GFD2.4a, in which we had vorticity advection and the
vertical gradient of the temperature advection.

= If we study a wave-type pattern, both elliptic operators can be represented by a simple
change of sign. It follows that:

w X —% (v.V(f+§)) —v.Vo

= Note that this time we have eliminated the tendency term (rather than the vertical velocity
term) between the vorticity and thermodynamic equations and obtained a diagnostic equation for w
(rather than a prognostic equation for ). This equation is usually derived in pressure coordinates.

2.4.e) Application of the omega equation
= Go to: https://www.meted.ucar.edu/labs/synoptic/qgoe_sample/ggoe_widget.htm

% It all gets very complicated and you have to sit and scratch your head a long time looking at
these equations, making sure you have got the sign right... because if you get the sign wrong you get
it all completely wrong.

2.4.f) Recap
= Here is a summary for all these simplified quasi-geostrophic illustrations:

* The fall or rise of geopotential is proportional to:
] = positive or negative vorticity advection
» the rate of decrease with height of the cold or warm advection

* For diagnosing the vertical velocity, rising or sinking motion is proportional to:
= the rate of increase with height of the positive or negative vorticity advection
= warm or cold advection
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General idea

In this chapter, we stay in the quasi-geostrophic framework (see #GFD2) and focus on Rossby
waves. We start with a general idea of what happens to a parcel of air or water if it is displaced on the
planet where there is a variation in the Coriolis parameter, i.e. what are the consequences of
conserving the potential vorticity.

We will derive the dispersion relation for Rossby waves by looking for trigonometric/wave-
like solutions. We will overview different cases:

1) Barotropic Rossby waves (see #GFD3.1) and topographic Rosshy waves (see
#GFD3.1g),

2) Baroclinic Rosshy wave, in a multi-layer model (see #GFD3.2a) and then in a
continuously stratified fluid (see #GFD3.2b). We will decompose the variability in the
vertical, i.e. extract independent vertical modes.

We will study the wave solution propagating through a non-uniform background flow with
shear. Waves are solutions with trigonometric variations and imaginary exponentials, so the time
variation is an oscillation and there is a propagation. What if the exponential becomes real?

3) It results in a perturbation that grows in time exponentially and becomes unstable.
We will review the conditions required for this to happen in a barotropic (see #GFD3.3)
and then baroclinic (see #GFD3.4) frameworks.

GFD3.1: Barotropic Rossby waves
3.1.a) Parcel displacement in a vorticity gradient

= Let’s consider as parcel of fluid:

* In a non-divergent barotropic framework, i.e. the
absolute vorticity is conserved (see #GFD1.3b) following the
parcel: g = f +¢&.

* On a planet with some curvature, i.e. the planetary /’
vorticity (Coriolis parameter) f varies with latitude (larger f to 7

7/
0

f+

the north - smaller f to the south).

= At the origin, this parcel of fluid has no relative g
vorticity (£ = 0). Imagine, for some reason, there is a f—
perturbation that displaces the parcel (a little bit) to the north,
where f gets larger.

= In accord with the conservation of absolute vorticity (f + ¢), the relative vorticity of the
flow will compensate for this increase in f and & must become negative (¢ < 0). Negative relative
vorticity is associated with a clockwise curvature of the flow.

% So, the flow curves back down towards the south and the parcel will return to its latitude of
origin. This is a stable situation, i.e. the solution oscillates such that the force that restores it to its
position of origin is somehow proportional to the distance from the origin position.

e\

7
/
/ ,
7

Rossby wave

£=0
f_

= You can imagine it overshooting and going back down south in which case it will come back
north and it will produce a wave, a Rossby wave. A wave for which the restoring force is not just the
Coriolis force, but the variation of the Coriolis force with the latitude.

% We need variable f for this to happen, so this cannot work on a f-plane.
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3.1.b) The conservation of vorticity

= We will derive the dispersion relation for Rossby waves.

= We remain in the general framework of quasi-geostrophy in which the potential vorticity
. . . D . . .
is conserved following the flow, i.e. D—z = 0, with the material tendency given by the local tendency

plus the advection terms.
% Here, the advection terms depend on:
- a background zonal flow U
- and the small perturbation flow (1', ") associated with the wave.
a d 0

D
his gi = n_— I
This gives ;= t—l—(U—l—u)5 -i—v5

= q depends on the type of flow we consider. We will study the Rossby wave dispersion
relation in three different contexts:

1) Non-divergent barotropic flow (see #GFD3.1c) =

1) Nondivergent barotropic bounded above and below by a and a
. The flow is uniform in the vertical, i.e. it is barotropic.
2 In this case, the potential vorticity is the (see
q=Py+ V= #GFD2.3h): ¢ = f + & = By + V%Y. The stream function (y)

is the perturbation of the stream function associated with the
wave and the stream function of the background flow U.

2) Then we will study the effect of variable layer thickness on ~ 2) Single layer of variable thickness
a barotropic flow (see #GFD3.1f). In this case, you can generate

vorticity by divergence and there is a vortex stretching term in

the potential vorticity formulation (see #GFD2.3h). It is often q=PBy+ V- L;fgb
called equivalent barotropic, as there is only one active layer,

the layer below is a motionless abyss. /X/

3) We will finally consider the full
baroclinic framework (see #GFD3.2)
bounded above and below by a rigid lid

3) Two active quasi-geostrophic layers
with a flat bottom and a rigid lid

o 2 o . .
q=By+ ng n a_%a_"ﬁ and a flat bottom. We impose no ‘;fi-rtlcal
2 z velocity at these boundaries, i.e. 5 = 0.
N p L \/ngl,z In this framework, we consider that the
“H 12 = f fluid is Boussinesq, so the vortex
o stretching term in the continuously-
75 =i stratified fluid potential vorticity formula

o @ =By+ VP — LT (1 — 1) is slightly simplified (see #GFD2.3i).

L If you discretize the vertical derivative

and do a finite difference, you can easily

H, 02 = By + Vz'qbg +L§2(1/;1 — 1) derive tf_1e po_tential vorticity expressions

o9 for a discretized two-layer f-rame.work

3. =0 (see #GFD3.2a). You obtain simple

differences between the stream functions.

In the upper layer, it reduces to the inverse square of the Rossby radius times the difference between

the stream function in the two layers. In the lower layer, a distinct Rossby radius (the thicknesses can
be different in each layer) times by the difference between the stream function in the two layers.
% The formulae for the potential vorticity are coupled: g; depends on ¥ and g, depends on ¥,.
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Equation

Properties Solutions

Dispersion relation

3.1.c) CASE 1: Non-divergent barotropic case

= We develop the substantial derivative in the potential
vorticity conservation equation (see #GFD2.3g), using the

2
q = ﬁy +V 'lnb characteristics of the background flow:
oy o
u=U+u=U—— and v=v' =—
dy dx
0 0 oY 0
We obtain: - (By + V) + ( - 8—¢) 5. (BYy + V*0) + —w—(ﬁ +V2) =0

We can cross out some of these terms:

* As By does not vary with time or x.

* We linearize the equation and consider that perturbations are small compared to
the mean flow. Terms with a square of perturbation are neglected.

gt(b“vzw)( %) 7&4+v%p+ (/3 + VR) = 0

d d
% The linear equation in perturbation ¥ can be written: (a ar U) Vi + B a_l,b =0
X

= We are going to look for wave-like solutions, plane-wave solutions:
¥ = Re ,%Zei(la:—!-my—wt)

= They have the form of an amplitude coefficient times an imaginary exponential:
- I is the zonal wavenumber (2 7 divided by the x-wavelength),
- m is the meridional wavenumber (2 7 divided by the y-wavelength)
- wis the angular frequency (2 7 divided by the period).

= Taking a derivative of this trigonometric function yields the same function multiplied by some
constant coefficients: o o
— = —iw ——i Vo —(1?+m?
ot T
% Substituting the solution and its derivatives into the linear potential vorticity equation gives:
—iw (12 +m?)) +il (~(2+m?))U+Bil =0
= It results in a relation between ®, [ and m (with 2 other geophysical parameters U/ and (3).
This is the dispersion relation for barotropic Rossby waves: pl

w=Ul-p e
B

~. [2 + m? and B are always positive. So, the
m
Rossby waves always propagate westwards, opposite to the background eastward flow U.

* The phase speed ¢ = ? is equal to U — 7z

* With m = 0 (i.e. the waves have an infinite meridional extension, meridionally they W

cover the entire planet), ® is proportional to —f/l. Relative to the basic state flow this term is ‘l
negative, so we plot it on the negative quadrant. The dispersion relation is a hyperbola, as zonal |
scales get bigger, frequencies get higher. This is a very dispersive large-scale wave, called a |
Rossby Haurwitz wave.

* As soon as you set a meridional scale to your structure (m # 0), the denominator

does not disappear. When [ = 0 then @ = 0. The dispersion relation is very different in

this case. For the meridionally-confined structures, the have ® ’
almost proportional to [, which means that they are almost ,

until a certain point. The maximum o is found for P

[ = m, and then for the shorter M0
waves (for larger [), they ‘

become very dispersive. J (U =0)
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Wave propagation speed

Westward propagation illustration

3.1.d) Rossby wave dispersion

w
* The phase speed: ¢ = — = U

opposite to the background eastward flow U.

* The group speed on the other hand has a sign that depends on the
sign of its numerator: Ow ﬂ(l2 " m2)

cg=—7=U+

ol (12 + m2)2

ow 33 2 2v_1y 1 _ n el ooy (F4+mP) -2  P-m?
ol =0 E(I(l i) )i_(lg }m2) Tl ) e = (12 + m2)2 77(12 t m?2)2

= On this graph, the phase speed is the arrow that points
from the origin towards the curve (whichever curve is
used), while the group speed is the tangent to the curve. l «

e
l 12+ m?2
% With [2 + m? and p always positive, the Rossby waves always propagate westwards,

(U =0)

< Relative to the background current, the direction of propagation of the energy of the wave
depends on the shape of the wave (ratio of zonal to meridional scales):

If ] = m, the group speed is zero.

If I >m , i.e. waves which have a larger
meridional scale than their zonal scale, then the ratio
term in the group speed formula is always positive.
Relative to the eastward background flow (U), the
phase speed of these waves (in blue here) will be to
the west, while their group speed will be to the east.

m <l

= From the dispersion relation, it comes that:

If | < m, the waves are elongated in the
zonal direction and the ratio term is negative. The
group speed and the phase speed are both to the west
(relative to the eastward background flow (U),). These
waves are more non-dispersive and are easier to
observe because they will not lose their shape as they
propagate westwards.

= O D

m > |

- Rossby waves are dispersive. Longer waves go faster.
- Waves closer to the equator go faster (/5 is maximum at the equator, zero at the poles)

3.1.e) Rossby wave propagation mechanism

= Why do Rossby waves propagate to the west?

* Remember the parcel which was displaced from its position of origin. To the north, it has
acquired negative relative vorticity resulting in a clockwise circulation. To the south, positive relative
vorticity has been induced, i.e. an anti-clockwise circulation.

* Imagine now a streamline of potential vorticity that follows the parcel. It has been moved

to the north or to the south, portraying a wave.

= How would the stream line be displaced by this secondary circulation?

It will be pushed away from the origin on the 1ty
west, and towards it on the east. So, at a later time, the ‘ n(t=0) - “
streamline will follow the dashed curve, effectively ,,"
moving it to the left on the diagram. The Rossby wave is A “ .

thus propagating to the west.

%, The secondary circulation induced by the

nit >0

constraint of conserving the vorticity produces the westward propagation.
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Equation

Solutions and dispersion relation

3.1.f) CASE 2: Divergent case (variable layer thickness)

= In the case of a variable layer thickness, the same
advection operator is applied to a different definition of
9 9 potential vorticity. The latter contains a vortex stretching

q=PBy+ VY- Ly term (see #GFD2.3h), which is — L;*%.
" In the PV conservation equation, the stream

’_\/ function is the sum of contributions from:
the stream function associated with the perturbation )
.{and the background flow stream function 5 = —Uy

& Vzth = 0, but for the divergent case, the contribution of the background flow U remains
in the vortex stretching term, such that:

0 N0 , 0 _
(a-i-(U-l—u)%—i-v @) (5y+v2w—LR2(¢—Uy)) =0

= As in the non-divergent case (#GFD3.1c):

] a
U+uw=U-2 and v=2

dy dx
* Terms associated with time and x variation of 8y and Lz?Uy can be crossed out.

* We linearize the equation, so terms with a square of perturbation are neglected.

% The resulting PV conservation equation can be sorted into two terms:

) B L . ol
(& + Ua—m) (V2 — Lg%y) + (B +LR2U)6—E =0

= The first LHS term is the material tendency of the perturbation relative vorticity and vortex
stretching term, i.e. the mean flow advecting the perturbation.
= The second term is the other way round, i.e. the perturbation flow affecting the mean. This

is the perturbation meridional flow (v' = a—f) advecting the potential vorticity associated with the
background flow plus £5.

= As in #GFD3.1c, we derive the dispersion relation by substituting plane-wave solutions
( _ ), and their derivative properties into the PV conservation equation. It follows that:

+ LZ2U
Mg
2+m2+ Ly
w
% The second term is more complicated than before and 2 things have changed: 1

* On the numerator, there are now two terms: Sl (as in #GFD3.1c) and Lz2UL. This
means that the background flow not only displaces the wave, but also interferes with the
properties of the wave. In particular, the phase speed of the wave (relative to the background
flow) will be altered by the background flow.

* On the denominator, there is an extra term LEZ , a positive constant. This means
that the very dispersive Rossby Haurwitz waves are not a solution to the barotropic divergent
framework (see dotted line). The solution always resembles the green line on the graph.

The phase speed is bounded and long-Rossby waves are always close to non-dispersive,

with group speed to the west (even for m = 0).
l : /.\

U=0)
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3.1.g) Topographic Rossby waves

= We focus now on a slightly different case in which potential vorticity can be changed by
externally constraining the layer thickness. From #GFD2.3h, the quasi-geostrophic potential vorticity
can be written as:

fo
q=fo+py+§—70h
Note that, in the example below, we can disregard the changes in the planetary vorticity (S3y).

= Consider an ocean getting shallower towards
the north (see illustration on the right).

% In this example, the thickness of the Ocean
is proportional to the latitude y, hpc = ay . Since the
Ocean gets thinner to the north, a is negative.

This topographic effect will add a constrain on
dh, so the quasi-geostrophic potential vorticity is:

q=fo+ﬁy+s‘—%(ay+n)

= Imagine that a column of fluid is displaced
northward.

% Because of the change in the topography,
the column is (it gets shallower).

% Its potential vorticity has to be conserved, which triggers . This
induces a clockwise flow, similar to #GFD3.1a. Just like before, the displacement can generate a Rosshy
wave, which lives on this slope.

% Mathematically, the external constraint term (topographic effect) —%ay is positive and

identical to the p-effect. In the northern hemisphere, an ocean floor that is shallowing to the north will
have the same effect as . In the southern hemisphere the ocean floor must shallow to the south.

= These waves are called

GFD3.2: Baroclinic Rossby waves

3.2.a) CASE 3: Two active layers

= In this framework, we have two

g_f —( active !ayers in \.N.hiCh t.he guasi-geostrophic
g = ﬁy + v2¢1 . L1_2 (1’[}1 _ ¢2) zgt':e[;;cglh): vorticity is conserved (see
a1 = ! :151 ~ Hil(f +& _Hilah)
@2 = By + V3 + Ly (1 — ) qz:f;gzzHiz(f+€2+HL28h)
% =0 = We retrieve geostrophic stream

functions for each layer (see #GFD1.2e):

1 1
foxul = —p—VPl =_gV(h1+h2) and foxuz =_p_VP2 = _gV(hl‘}'hz)_g'th
0 0

[0} =%(h1 +h;) and Y, :%(fh + hy) +%h2

% The interface displacements (from the rigid lid) are §h = —h, = %(1,01 —1,). Therefore,

the vortex stretching term is a coupled term defined in terms of the difference between the two
stream functions.
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Equation

Decoupling and modes

Dispersion relations

= As in #GFD3.1f, the conservation equation can be expanded by using the advection
operators defined in terms of the stream function. ¥ For simplicity, the background flow (U) has been
disregarded in this example. Simplification of time and x-invariant terms and linearization yields:

0 0
5% (V291 — LT (31 — )] + ﬁ% =0
0 0
o [P + L1 — o)) + B2 =0

% As in #GFD1.2f, the two equations for the potential vorticity are coupled (the top layer
equation depends on ¥, and Y, so does the bottom layer equation).

% The problem now is to decouple these equations. Similar to the shallow water equations
(in #GFD1.2), we have to define new variables that are a linear combination of 1; and 1, which will
provide two independent equations. For this example, we do not need to compute the eigenvalues
and eigenvectors of the coupling matrix. The variable transformations are more straightforward.

1) We can first define a barotropic mode, noted 1/3, as the weighted sum of the stream
functions by the layer thicknesses.

%= Hivy + Havbp
H, + Hy
% It can also be expressed in terms of the Rossby radius:
-2 -2
Ly "1 + Ly "2
I

-2 =
R =Li? 472

Y=
2) We can define a 1[3 which is just the difference between the two layers:
Y =11 — P

= If we manipulate the set of equations so the variables are 1 and 1, we obtain two
independent equations, one for the barotropic mode and one for the baroclinic mode:

d PN Y.

% Naturally, the barotropic mode equation resembles the barotropic potential vorticity
equation (see #GFD3.1c), while the equation includes an extra stretching term.

=These two modes are associated with distinct dispersion relations:

d w=— L
o C BR+m2+4 L w

¢ The barotropic mode dispersion relation will depend on the shape of the waves from
the extreme Rossby Haurwitz wave to the non-dispersive long barotropic waves (see #GFD3.1c).
* The is slower and its dispersion relation has a Rossby radius
term in the denominator L? = L2 4+ L, ? and always yields almost
non-dispersive long Rosshy waves.
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Vertical structure

Vertical separation

3.2.b) CASE 4: Extension to the vertical continuum

a = Let us now consider the dynamics of linear
2z =0 waves in stratified quasi-geostrophic flow on a (-
plane, in a domain confined between two rigid

g=PBy+ V¥ + RO (f_fipsal) surfaces at z =0 and z = —H, with a resting basic
[ A state.

W _, % The quasi-geostrophic_potential vorticity

0z for a continuously stratified fluid is conserved

following with the flow (see #GFD2.3i).

= The interior flow is governed by the quasi-geostrophic potential vorticity conservation (see

#GFD2.3i):

dg B

% As in #GFD3.1f, the conservation equation can be expanded and linearized, leading to:

] 1a(fozalp)]+ oy

Ny R T _
ot [V V5 \P N ez ax

0
poz

% If the boundaries are flat, rigid, and slippery surfaces, thenw = 0 at the boundaries.
Also, if there is no surface buoyancy gradient, the linearized equation is:

) (au)
ot \oz

= As in the single-layer case (#GFD3.1c), we seek solutions of the form of plane-wave
solutions, ) = Re 'l,b(z)e'(“”"'m”_“t), where (z) determines the vertical structures of the waves.

)ZOatz=0andz=—H

% We indeed have to account for the fact that the wave amplitude might vary in the vertical.
For the two-layer case, we had two modes because we had two layers. For the vertically continuous
case, we have functions of z.

= Substituting the solution and its derivative into the linear potential vorticity equation does
not yield a simple algebraic expression. It results in a differential equation for the wave coefficient

P(2): ; 10 2 1) ;
of e merir s L (D) gy

p oz
% To solve this equation, we make a separable dependence assumption, implying that
horizontal and vertical structures of the waves can be separated, I,E(z) satisfies:

10 ( fo°09(2)
poz PNZ g,
= Then the equation of motion becomes:

—w[(P+m?) +TlY—plp=0

) = -T)(z) (*) ([isthe separation constant)

% And the dispersion relation follows:

Ll
) = =
(2+m2)+T
= Equation (*) constitutes an eigenvalue problem for the vertical structure, with boundary
. a . . . .
conditions a—j = 0atz = 0and z = —H. The resulting eigenvalues I" are proportional to the inverse

of the squares of the deformation radii for the problem and the eigenfunctions are the vertical
structure functions.

What do these vertical structures look like?
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A simple example:

= For simplification, we consider waves propagating in a Boussinesq fluid, with a constant
stratification. The eigenproblem for the vertical structure (with previous boundary conditions) is:

2527
fo® 0% (2) + 0 1
— = —TY(z) (** z=0
e = @ (+9)
% There is a sequence of solutions to this equation, namely:
Pn(2) = cos(nmz/H), n=1,2..., k, =nn/H n=0
n=1
= The first solution (n = 1, blue line) is half a wave in the =3 ?\
vertical, the second solution (n = 2, green line) is a full-wave in the
vertical. The third mode is one and a half waves in the vertical, etc...
These constitute n baroclinic modes.
% The structure of the baroclinic modes becomes more
complex as the vertical wavenumber n increases. -

» Each mode has a different eigenvalue:
2
— 2(Jfo _
I, = (nm) (NH) , n=12..
® This equation can be used to define the deformation radii for this problem, namely:
1 NH N
JL, nfy  foky

» The phase speed of the Rossby waves is given by w /L.

L, =

pl

2
(12 + m2) + %kﬁ

= The dispersion relation is different for each mode: w=—

% For each different vertical structure, we have a different Rossby wave with different properties.
% For each mode, Rossby waves have a different phase speed.

A more realistic stratification:

= In a Boussinesq fluid, the eigenproblem for the vertical structure is more complex as the
stratification depends on the vertical (N2(z2)):

9 (ﬁ avﬁ(z))

z=0

0z\N? 0z =@ (=)

—

% For a stable stratification, this differential equation with its o
boundary conditions is reduced to a Strum-Liouville system which can =1
be solved numerically. =3

= The structure of the baroclinic modes which depends on the
structure of the stratification, becomes increasingly complex as the
vertical wavenumber n increases.

= The variability of the vertical structure is confined in the
thermocline layer where the stratification is maximum. 7=}

% In addition to these baroclinic modes, the barotropic mode with n = 0, that is 1,[3(2) =1,
is also a solution of (*) for any density profile (black line).

% The dynamics of the barotropic mode is independent of height and independent of the
stratification of the basic state, and so these Rossby waves are identical to the Rossby waves in a
homogeneous fluid contained between two flat rigid surfaces (see #GFD3.1c).
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3.2.c) Vertically propagating Rossby waves

= Rossby waves propagate horizontally, as the restoring force is in the horizontal.

% But they have a vertical component to their propagation as well. For instance, Rossby
waves can be out of phase in different layers, and they can thus effectively propagate with a vertical
component to their propagation.

= The vertical wavenumber for each mode k,,,, = nr/H can also be expressed in terms of ¢,
the gravity wave phase speed for the n-mode, as k,,,, = N/c,,. ¥ ¢, is not the Rossby wave speed!

= The dispersion relation for very long Rossby wave (I2 + m? « kZff#/N?) can be
approximated, as:
Bl BIN? _ Blc?

(12 + m2) + Ij\%kg fozkr% foz

w=—

2 2
= The horizontal group speed is: 0w = _BN" - _Be
ol J2k2 J?

Ow _ 2BIN?  2plc)

= The vertical group speed is: —— = —
group=p 9k, ~ [k [N

% We can trace the signal path associated with the Interannual RMS
vertical propagation in the x — z plane by calculating the
ratio between the two group speeds:

v
|
|
i
|

dz _ ¢ _ _2en _ 2fw
dr  cf N BNc,

!
\l
|
|
|
o

Depth (m)

This provides the slope at which the energy

propagates, allowing us to ftrace the direction of - ;"
propagation of perturbations. d\' il

On the right is a figure by Vergara et al. (2017) Ot |, A ‘
highlighting a ray, showing the propagation of a ’:;?ﬁiﬂff’f;, e 2 140°W  100°W

perturbation to the thermocline depth. It gives 5200

observational evidence of vertically propagating Rossby R 5 10 15 20
waves. m

3.2.d) Observations

Below is a (quite old) global longitude-time representation of the Sea Level anomalies
(perturbations) at 25°S from Topex/Poseidon altimetry data from 1993 to 1998. The longitude in
degrees covers the 3 tropical Oceans: Pacific, Atlantic, and Indian.

The diagonal stripes are the signature of
westward propagation. It takes about five years
to cross the Pacific basin. This cannot be the
signature of an external/barotropic Rossby
wave, because that would go too fast to be
picked up by this altimeter time resolution
(dt=10days). It could be the adjustment of the
sea level to a perturbation on the thermocline,
i.e. the trace of a (slower) baroclinic Rosshy wave
traversing the Pacific in a few years. However, it
is not entirely sure whether this is exactly what
it is or whether it has to do with non-linear
phenomena like eddies.
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General idea

GFD3.3: Barotropic Instability

3.3.a) Growing Rossby waves?

= What happens when we allow the basic state flow to become more

interesting/complicated?
* Up to now, we have assumed that the basic state flow is just uniform westerlies (U = cst).

Qur parcel was displaced around an equilibrium controlled by a horizontal restoring force and it
created a Rossby wave (see #GFD3.1a).

+ £<uf\

/

P STABLE
I\
f+ No curvature
induced
i
- Shear background flow U
>0

f= ¢ UNSTABLE

= What happens if the basic flow resembles a sharp jet in the westerlies, with strong

meridional shear?
* At the origin, the relative vorticity (¢) is not zero anymore. Imagine dropping a wheel into
the flow, it will spin anti-clockwise (because of the shear), i.e. with positive relative vorticity (¢ > 0).
% - When the parcel is moved north, the planetary vorticity gets bigger (f 7).
- According to the conservation of potential vorticity (absolute vorticity f + §), we would

expect the relative vorticity to get smaller (¢ \).
- but the background flow was chosen such that its shear is smaller there than in the south,

so no secondary circulation develops (no curvature is induced). The particle just goes north, as if it is
allowed to just take off.

= This is the beginning of the consideration of instability.

3.3.b) Perturbations on a parallel shear flow

= Let’s consider a

2 _ — . .
= [-}y LT 'l,[) on a Bpla?e (f = fo + By), with a geostrophic parallel
shear flow in the background: 1 dp
u=1uy) = — -
pf dy
= On top of the background flow, we have perturbations:
=uly)+u =1u i d v=v= v
u=u(y)+u =u(y) 3y an v—v—ax
% The momentum and continuity equations can be written:
ou n ou n ou 10p
— 4+ u—+v——fv=———
ot dr Oy p Ox Ou n ov _ 0
v  Ov v . _ 10 9z~ Oy
ot ox oy  poy
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Dispersion relation

The waV

= Linearization yields:

6u’+_6u'+ ot , 1ap’
at “ax ”ay fv p 0x
6v’+_6v' = 1ap’
at ”ax fu' = p dy

= The vorticity equation is derived by taking the curl of the momentum equations

2 a e A S ) |
(5% (2) - 5(1)) and simplifying. It follows: P + Uz v 3z +v 3y =

0

% In terms of the stream function, the linear vorticity equation on a -plane writes:

% We obtain a vorticity equation in which:
* The first term is the advection of perturbation vorticity by the background flow,
* The second term is the advection by the perturbation flow of the absolute vorticity
associated with the basic state.

= The difference compared to the uniform background flow case (#GFD3.1c) is that we have
meridional variations (shear) in the basic state flow.

= From the linear vorticity equation in a parallel shear flow (see #GFD3.3b), we derive a
dispersion relation for the Barotropic Rossby waves by introducing solutions of plane-wave form:

W = Re e HmI=88) (similar to #GFD3.3b):

> Note the presence of the relative vorticity of background flow (U, in the inner term.

(a) Stationary wave number: JFM 2014

3.3.c) Stationary Rossby Waves

= Atmospheric scientists are interested in
stationary Rossby waves, i.e. Rossby waves which stay in
place, with @ = 0. The relationship between the properties
of the wave ({2 and m?) and the background flow follows:

U(® +m?) = (8- Uyy)

% There is a relation between the horizontal
wavenumber k (k? = I2 + m?) and the background flow:

U
elength is 21 Iﬁ _

= For the stationary wave to exist, the
wavenumber has to be real, i.e. (B — Uyy)/U has to be
positive. This means that f — U,,,, must have the same sign
as U (which usually means both must be positive).

% Fig.c (from Coelho et al., 2016) shows the
meridional gradient term (U,,), which is positive almost
everywhere. This means that for stationary Rossby waves to
exists, we must have easterlies. Fig.b shows the associated
zonal wind component (U) and Fig.a represents the
stationary wavenumber k. White areas denote regions in
which g —U,, and U have different signs and k is
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Rayleigh equation

complex/imaginary. In these regions, stationary or very low-frequency Rossby waves cannot exist.
Contrastingly, there is a large area in the eastern Pacific where stationary Rossby waves can exist, this
is the pacific waveguide.

= Ray paths of the stationary Rossby waves can also be calculated as before (see #GFD3.2c)

from the ratio of the zonal group speed {Z—T) and meridional group speed (g—:t):

(12 —m? 283.lm
cg:(U+ﬁ( KA )a_ ﬁk4 ) (Be = B — Uy, k2=l2+m2)

% Plotting the different components of the group speed provides the theoretical direction of
the stationary Rossby wave, as illustrated in Fig.a.

3.3.d) Growing solutions

= Whenever we consider waves, the other side of the coin is instability. Let's get on to this
idea of a solution that can grow. A gravity wave is stable, while a thunderstorm is unstable. A Rosshy
wave is stable and barotropic instability leads to rapid development. In #GFD3.3a, we considered a
parcel of fluid that can take off in the meridional direction.

We are seeking for the linear vorticity equation in a parallel shear flow

derived in #GFD3.3b:
0 0\ s d?u\ oy
(a*“&)vw+(‘aﬁ)£—°

= In the linear vorticity equation, the coefficients of the x-derivatives are not themselves
functions of x. Thus, we may seek solutions that are harmonic functions (sines and cosines) in the
x-direction, but the and we seek solution such that:

w(a’: Yy, t) = ¢(y)ei(l$—wt)

% We substitute this solution into the vorticity equation (see LEEIRGELEIIGIE on the
following page) and it is very similar to what we did with the vertical dependence in #GFD3.2b. We
obtain a differential equation for ¢p(v), namely:

¢ B — d*u/dy?
Py =0
dy u(y) —c
% This is the , in which
¢ = w/fl, known as . We are not going to solve this equation! We are going to

analyze it for the possibility of growth.

= The wave part of the solution is trigonometric with imaginary exponentials. But if what is
inside the exponential has an then you would get a real exponential.

* If wis purely real then ¢ = @/l is the phase speed of the wave.

* If @ has a positive imaginary component («;) then the wave will grow exponentially and will
thus be P W= Wy +iw;, W' = w, — iwjis the complex conjugate.

% Supposing that [ is real, the phase speed ¢ = @/l can be complex too:

c=cp+ic, ¢ =cp —ic
% [ could be complex but it would not add anything. It would just be more mathematics.
We are interested in whether it is possible for ¢ to have an imaginary part. Because if it does

that means w has an imaginary part, which means there is a possibility of instability. We are going to
analyze for the possibility of ¢ having an imaginary part.

= = If we add channel boundary conditions (¢p = 0 aty = 0,L), in general, we get a set of
solutions for ¢ associated with complex conjugate pairs of values for ¢ (or w). The imaginary part of
the solution is associated with growth or decay. The growth rate is the imaginary part of w.
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Details for the derivation of the Rayleigh’s equation

o 0\, d*u\ o B i(lz—wt)

a ,, . d
V29 = Pgq + tyy = oz (¢l e<>) + By (¢ye<>) = (_9’512 + ¢yy) e~
Yy = pile<”
(=9 1 + Byy) HAT(—D L + Byy) + (B —Tyy)pil = 0

_%)(ﬁbyy —¢ 12) + H(‘3’534'3;! - ¢l2) + (ﬂ - Hyy)‘#’ =0
— (%= 8) (G — 61+ (B—Tpy)p =0

(@ —c)(pyy — ¢’12) + (B —Uyy)p =0

¢yy - l2¢’ + (ﬁ___ uyy) (b =0

u—=c
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Rayleigh equation

Rayleigh criterion

3.3.e) Conditions for growth: the Rayleigh criterion

= = If we add channel boundary conditions (¢p = 0 at y = 0, L), in general, we get a set of
solutions for ¢ associated with complex conjugate pairs of values for ¢ (or ). The imaginary part of
the solution is associated with growth or decay. The growth rate is the imaginary part of w.

d? — d*u/dy?
—¢—12¢+—ﬁ_ /dy =0
dy? u(y) —c
= We multiply by the complex conjugates of ¢ and integrate the

equation across the domain from 0 to L. The two first terms are integrated by parts.

d
d_y(¢¢y) = ¢§ + ¢y, = d(ggy) = d’i dy + ¢oyy dy

L L L
[ B(8yy — 126) dy = ] (86yy — 126%) dy = fo d(6,) — [0 (6,)° dy — fo 26 dy

L
— [¢gglk — [ I6u1% + 1262 dy
0

L 2 L g _ J427/4.2
It gives: —/ ‘@ +1%¢|? dy+/ M|¢|2dy=0
0 dy 0 u-—=c

. The equation equates to zero if its real (see #GFD3.3f) and imaginary parts are both zero.

The first LHS term is positive definite and real. Therefore, if there is anything in
this integral, it must be in the second term.

= To get rid of the imaginary part in the denominator, we multiply top and bottom by
(1 — c)*. We get &4 — ¢ on the outside of the integral. We do not care about i or the real part of ¢
because they are both real. We only care about the imaginary part of ¢ (c;). This procedure allows us
to isolate the imaginary part of the integral:

N
of, (- 5F) moaptr =0

This quantity has to be equal to zero because it is the only imaginary bit of the whole

equation.
% Either - ¢; = 0, i.e. there is no imaginary part for the phase speed and the flow is
or -¢; # 0, in which case the integral must be zero.

= How can this integral be zero? The ratio is real and positive, which means that g — u,,,, is
either zero everywhere or at the very least f§
between (0 and L).

= Uyy

. . o d L o Ju
This term, which can be written @(fo + By — uy), i.e. the meridional ""thedu” must

. . . . . . bet N som
gradient of the absolute vorticity must change sign somewhere in the domain. - %’_ If the g, e:vee" (0ang | ¢

This is a necessary condition for the integral to be zero, which is
- a necessary condition for the phase speed to have an imaginary part, which is
- a necessary condition for
This is the

The condition is to have an extremum (maximum or minimum) in the absolute vorticity, i.e.
its gradient changes sign somewhere in the domain, i.e. the velocity profile has an inflection point.

This Rayleigh condition is a for barotropic instability.
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Figrtoft criterion

3.3.f) More conditions for growth: the Fjgrtoft criterion

There is another necessary condition called the . The Rayleigh condition
dealt with the imaginary part of the linear vorticity equation in a parallel shear flow. But the

must also be satisfied, so:
“19¢)° ‘ d’u\ ¢l
—_ 1K 21d 7 — _ | —
f( . |cp|) v+ | @ cr)(ﬁ dyz)lﬁ_cl

The first LHS term is negative, which means that:

dy
0 " dy2 |ﬁ - Cl
This inequality f A(u = C) > 0 is similar to the imaginary part of the equation we dealt
with deriving the ,i.e. f A=0

It consists o-f decomposing (u — ¢) into two terms: (u — ug) + (uy — ¢):
JAu—w)=[A(u—c)+ [A(c—ug) >0
With (¢ — u,) being a constant and with [ A = 0, the last term cancels.
It follows that [ Alw — up) > 0
4|2

With — > > 0, this means v
|u - C| Som uﬂ, (ﬁ'-—uo ﬂ _ )
- - "€Where ; Uy ) my
(“ = UO)(ﬁ e uyy) : CIf é’;he domajp, st be Positiye
m'ght hav an in

Large values of uy:
For a very large positive value of u,, (u — uy) < 0 and (ﬁ - ﬁyy) must be < 0 somewhere,
For a very large negative value of ugy, (u — uy) > 0 and (ﬁ - ﬁyy) must be > 0 somewhere.
This a weaker version of saying that (ﬁ —ﬁyy) must change sign. This is the
, saying that the gradient of the absolute vorticity has to change sign in the domain.
So large values of u, add nothing to the Rayleigh criterion.

Medium values of u:

It is most useful to choose 1, to be the value of U(y) at which (ﬁ - ﬁyy) vanishes. This leads
to the . Moderate values of u,, such as (u — u,) also changes sign in the domain
somewhere, adds an extra criterion which is more of a constraint than just the (see
example in #GFD3.3g). The is satisfied if

, and not at the boundary or at infinity — the velocity profile must have
an inflection point inside the flow. necessary condition is than the

% Both and criteria are just necessary conditions. They are not sufficient
conditions. This means that, when analyzing a potential vorticity map, if one of these conditions is
satisfied, it does not mean that the flow is unstable, it means that it is possible for the flow to be
unstable.

On the other hand, the non-satisfaction of a necessary condition is a sufficient condition, which
means that if the or the condition is not satisfied then the flow is stable.
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3.3.g) Stable and unstable profiles

= In the examples below, parallel shear-flow could induce instability. The left column displays
the zonal component of the flow, while the right column shows the associated second derivative.

. . 2+ .
Poiseuille Flow Vo i Vo d“u stable (Rayleigh) -
(u=1-y3) -~ : dy? no change of sign
i0 1 ! 5 0 5

1) A Poiseuille flow corresponds to the quadratic form of a viscous fluid flowing in a pipe. The

derivative of the vorticity is a constant that does not change sign in the domain. By Rayleigh’s criterion,
it must therefore be stable.

L _ d*u .
Gaussianjet yo u yo il possibly unstable —
dy? change of sign
1U 1 ! 5 0 5
1 1
. . 2_
sinusoidal . 7 i d°u possibly unstable —
dy"’ change of sign
.11 0 1 ! 5 0 5

2) A Gaussian jet has an exponential form with extrema. It is therefore potentially unstable.
3) A sinusoidal profile has another sinusoidal function as its derivative. Likewise, this flow is
potentially unstable.

% The B-effect can be either stabilizing or destabilizing. If the f-effect were present and large
enough to have (ﬁ - ﬁyy) one-signed, it would stabilize the Gaussian or sinusoidal jets.

. 1
pg'ynog’"a' - &2u stable (Fjortoft)
(boundary yo U yo 2 vorticity extrema at the
extrema) dy boundaries
_’1 0 1 ! 5 0 5
4) This third-order polynomial profile is by (note that the vorticity

extrema are at the boundaries).
- By the Rayleigh criterion, it could be unstable because the basic flow vorticity has extremes.
-The criterion dictates that i has to have the same sign as —,,,, somewhere in the
domain. Here, they have opposite signs everywhere. It thus fails criterion. Fjgrtoft's u,
constant could shift & but the sign requirement must be true for all values of 1. In this case, it fails for
uy = 0. The polynomial profile is thus

3.3.h) Physical mechanism

How does the flow become barotropically unstable? Here is an example of a background flow:

=

-1 —- o

i

= To the south, we have uniform easterlies, and to the north, uniform westerlies. In these two
regions, there is no background vorticity.

= |In between, there is a transition zone with a strip of parallel shear flow, i.e. a strip of
background negative vorticity (clockwise) — an extremum. The flow is potentially unstable.
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% Consider a small perturbation, such
as a streamline is moved slightly to the north. It

exports its vorticity into a region where there is e W W

none. At the same time, on the other side of the
vorticity strip, but just out of phase, the same
thing happens.

The secondary circulation is going to

=) R )

GG B |
. A

displace the wvorticity contours, so that it - ' " . > .

deforms the vorticity strip and the situation
amplifies and the deformation continues.

GFD3.4: Baroclinic Instability

3.4.a) Baroclinic instability

= It is similar but for a baroclinic flow, in which there is a vertical dependence in the

background flow. How would a perturbation grow on this sort of flow?

% Let’s start by thinking about energy. Instabilities are growing perturbations, where do they

get their energy from?

- We have seen in #GFD3.3 that barotropic instabilities take their energy out of the horizontal

shear of the background flow.

- Baroclinic instability also takes its energy from some property of the background flow.

Let’s consider the configuration shown in the figure below. Upward is at the top and

northward to the right.

We define a very idealized geophysical situation on a
rotating planet, in which there are tilted layers of different
densities. To the north and at low levels we have heavy dense
fluid (cold water in the ocean). Towards the equator and at upper
levels the water gets warmer and lighter. In between, there are
tilted homogeneous density layers. In each of these layers of
different density, the colored dot is placed at the center of
gravity of the layer. Note that if it is in the atmosphere, we need
to take into consideration the compressibility of air and we must
consider potential temperature.

If we take all these layers and flatten them out, where
would the center of gravity go? Imagine filling the same amount
of space and laying out each layer horizontally. The densest layer
is spread horizontally at the bottom, while the lightest layer
becomes the surface layer of our ocean. The center of gravity of
the denser layers has moved downwards and for the lighter layers
it has moved upwards as the fluid rearranges. The center of
gravity of the whole fluid would go down because heavy layers
have more influence on the total center of gravity than the lighter
layers.

% By rearranging the fluid, we have moved the center
of gravity downwards. This means we have liberated potential
energy to supply kinetic energy. Release of instability can be
considered as a transfer of energy from a basic state to a flow.

terward sice

ECU

Poleword swde
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3.4.b) Sloping convection

Sloping convection is another way of thinking about baroclinic instability.
Is the following structure stable to perturbations?

* We consider a fluid that is , i.e. there is no reversal of the barotropic
vorticity gradient (Rayleigh criterion, see #GFD3.3e), a parcel of fluid is not going to take off.
* The fluid is also , i.e. we do not have vertical gravity instability (cold air is at

the bottom and warm air is at the top).

* Density contours are tilted, so that (potentially) cold air remains in the down/north region,
while potentially warm air is up and south. In a rotating system, we can imagine a steady basic
state with inclined density contours (we need rotation to balance the pressure gradient forces).

Displacement A-C: A parcel of fluid A is displaced vertically into position C. As it moves into
this lighter layer, the parcel will be heavier than its surroundings and it is going to drop back down.
This is static

Displacement A-B: A parcel of fluid A is displaced northwards into position B, along a slope. It
moves into denser air and it is lighter than its surroundings. It can thus keep on going up and north.
This a potential /baroclinic instability called Sloping convection. The energy stored in the
density structure is released.

———— density increasing

low density
high temperature

density decreasing

>-|-NG-- .

high density
low temperature

3.4.c) Optimal scales for growth

= At what kind of scales does this happen? One of the things that is important to understand
is that the process of baroclinic instability depends on some sort of communication between different
levels, and there are certain scales on which that happens.

= Let’s go back to the definition of the quasi-geostrophic potential vorticity equation (f-plane
Boussinesq, see #GFD2.3i) and do a basic scale analysis:

* The relative vorticity (V?1) is of the order of ~/L?, with L the typical length scale

at which we have vorticity gradients. f2‘1’ U

. . . -~ _
The vortex stretching term is of the order of N2E2 LR2

% This means that these two terms are of comparable magnitude when L is comparable to Lz.
On length scales comparable to the Rossby radius, both of these terms will be important and this is
what we need to amplify perturbations:

» if L > Lp, the relative vorticity term will be small and vertical coupling will dominate. There
will not be much difference between the top and bottom layers. At these scales, the fluid will
essentially be barotropic.

» if L < Lg, then the relative vorticity will dominate and there will not be any coupling
between the layers. The fluid would behave just like uncoupled/independent layers.

" , there is some interplay between these
two terms and this will allow
(horizontal variations of density or vertical shear of the wind).
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= If we are right that the Rossby radius scale is the scale on which perturbations can grow,
then we should see these scales naturally in a geophysical fluid, just like Darwinian selection. We
observe the scales that amplify. If the mechanism of amplification depends on it being a certain scale
then this is the scale that should be seen on weather maps or diagnostics of ocean variability.

% This is the scale we indeed observe: when looking at weather maps (see #GFDintro), we see
cyclones and anticyclones. Altimetric sea surface height show ocean eddies - all on the Rossby radius

scales (LR = A}—H)

3.4.d) Physical mechanism

= How does it work? Here is a schematic to explain the physical mechanism.

1) Consider a two-layered shear flow in thermal
wind balance. There are two layers with a slope between
them. In the upper layer, the current is flowing eastwards,
while in the lower layer, it is flowing westwards. The slope
means that the layer thickness varies from north to south
and accordingly the potential vorticity for the upper layer

increases towards the north. In the lower layer, it is the
other way around.

e

2) We introduce a positive potential vorticity
perturbation (PV+) into the top layer with an associated
cyclonic flow that diverts the upper-layer eastward jet.

3) Positive vorticity is associated with positive
layer thickness that will squeeze the layer below and drive
a circulation in the same way. In the lower layer, west of
the upper-layer perturbation, this circulation will advect
PV- southward, and east of the upper-layer perturbation,
it will advect PV+ northwards creating a perturbation
dipole in the lower layer. This will also divert the lower-
layer westward jet.

< @5‘

&
L
e"'\/’

4) In the center of the dipole, there is a southward component in the lower-layer flow, which
in turn will impact the upper layer dynamics. This induces southward advection of more positive
potential vorticity in the layer above, amplifying the original perturbation, which will grow.

% If there is the right phase relation between perturbations, they can mutually amplify and
grow. In this configuration, there is a slope of the dynamical perturbation towards the west with
height and which is consistent with the extraction of energy from the basic state sloping density
surfaces to produce a circulation anomaly which can grow exponentially.

% At the same time, due to the upper-level potential vorticity gradient and the gradient of f,
the entire structure propagates westwards (relative to the mean flow) as a Rossby wave.
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3.4.e) Modal solutions

= Here is an overview of the theoretical framework in order to analyze under which
conditions baroclinic instability is possible.

% Here is a reduced version of the linear perturbation PV equation, in which ¢’ is a
perturbation potential vorticity and Q is the potential vorticity associated with the background state.
¢  .9¢  ,0Q _

ot oz oy

= We seek wave-like solutions in x and the amplitude coefficients as a function of y (as in
#GFD3.3d) and also of z because of the presence of a vertical component in the variations of the
background flow, 9’ = 1,'5(3;, z)ei(lx_“’t) . We substitute this solution into the linear vorticity equation:

U - )& +3fi215 — %)+ Q=0
vl 9z N2 78 ye

With the boundary conditions (equivalent to w = 0) at top and bottom: (U — 6)72’;: - U;ﬂf’ =0

0

% This is the equivalent of our Rayleigh equation in the barotropic case (see #GFD3.3d) but
this equation contains both horizontal and vertical derivatives.

3.4.f) Conditions for growth

= In order to analyze the conditions for growth, as in #GFD3.3e, we multiply the equation by
the of 1 and integrate the equation across the whole domain, i.e. in the north-
south direction (from 0 to L) and also in height (from 0 to H). It leads to:

L H ~ _ L H Q -
f f 0, + f2 /N1 + 21 Pdzdy — f [ D iz 4
o Jo 0 o U—c

~ H
f3/N?U. [
T o—e | (#T0

The first LHS term is positive definite and real. Therefore, if there is anything in
this integral, it must be in the second term.

= We analyze this term for the possibility of it having an imaginary part for the phase speed.
To get rid of the imaginary part in the denominator, we multiply top and bottom by (& — ¢)*, and
isolate the imaginary part:

i H Qy .
- %y _102dr +
/[; f T — o V!

If c; # 0 then the integral must be zero. Instead of just having one criterion, the Rayleigh
criterion (see #GFD3.3e), we need to think about all the circumstances in which this integral could be
zero:

;2N ]

du =
U —c? y=0

Disregarding the second term (no vertical shear of the background flow, U, = 0), there is
the same condition as for the barotropic case, i.e. the basic state potential vorticity gradient
(Qy) could change sign somewhere in the domain.
Disregarding the first term (no horizontal gradient of background PV, @,, = 0), the vertical
shear (U;) has to have the same sign at the top (z = H) and bottom (z = 0).

Then there is an interplay between the two terms. If these two terms have the opposite sign, it means:
The gradient of potential vorticity (¢,) has to have the opposite sign to the vertical shear

(U,) at the top level (z = H), or
Qy has the same sign as a vertical shear (U,) at the bottom level (z = 0).

= There are 4 possibilities, called the Charney-Stern-Pedlosky criteria. These are necessary
conditions but not sufficient conditions: if at least one of these four criteria is satisfied then we might
have an instability. If this the case, then waves can grow either in the interior of the fluid if we have a
PV extremum for instance or on the boundaries if we have temperature gradients on the boundaries.
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3.4.g) The Eady problem

The analytical solution can be derived for a simple configuration. It is the Eady problem, in

which: * The motion is on an f-plane (§ = 0).

* The fluid is uniformly stratified (N2 is constant).

* The basic state has uniform shear: U(z) = Uz/H.
* The motion is contained between two rigid, flat horizontal surfaces.

%, Constant vertical shear implies that the basic state PV is zero (Q = 0), which makes the Eady
problem a special case that can be solved analytically. Solutions have modes that grow on the

boundaries.

The non-dimensionalized growth rate as a
function of the zonal and meridional wavenumbers
(non-dimensionalized by the Rosshy radius: figure on
the right) shows stable conditions for short-waves
and for any given zonal wavenumber the most
unstable wavenumber is that with the gravest
meridional scale. This figure also highlights the scale
of the maximum exponential growth, close to the
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= The maximum growth rate is

031U
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= Wavenumber and wavelength at which the
instability is the greatest are:
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M Ly m ek, 16°F
= The structures of these modes for the most
unstable Eady mode are tilted with height towards
the west.
More details can be found in Vallis (2017)

3.4.h) What we learn from the Eady problem

* The maximum growth rate is 0.31U/Lg and there is a length scale associated with the
maximum instability, close to the Rossby radius scale (a factor of 3.9).

* There is a short-wave cutoff — short-waves are not unstable.

* The circulation (meridional current, stream-function) must slope westwards with height in
westerly shear to extract energy from the basic state.

% In the Eady problem, the instability relies on an interaction between waves at the upper and
lower boundaries. If either boundary is removed, the instability dies.
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% To get a qualitative sense of the nature of the instability, we choose some typical
parameters:

= For the ocean, we choose:

H~1km, U~0.1m.s71, N~1072s71
We then obtain:
NH 1072 x 1000

Rossby radius Ly = T O 100km

Instability scales ~3.9 x Ly = 400km
U 03x10

Growth rate ~0.3 T I 0.026 day~! (Period ~ 40 days)
R

= For the atmosphere:
H~10km, U~10m.s™t, N~10"2%s71
We then obtain:

_ NH 1072 x 10*
Rossby radius Ly = N2 ST a—— 1000km

Instability scales ~3.9 x Ly = 4000km

U 03x10 ~ _
Growth rate ~0.3 T 0.26 day™! (Period = 4 days)
R

% The time scale is a few days for a weather system

3.4.i) Heat transport in a baroclinic system

= Baroclinic instabilities are important for the climatic system.

1) Consider how radiative forcing heats the equatorial region and cools at the poles. There is
a zonal jet flowing horizontally between the two regions, consistent with thermal wind balance.

2) If this radiative forcing persists, the jet will get stronger as the equator gets warmer and the
pole will get cooler.

3) At some point, the jet will break out into eddies. The origin of the growth is the unstable
profile either in the horizontal or in the vertical direction (or both) - baroclinically unstable. The
perturbations that grow will have this shape:
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» A low-pressure anomaly in the upper layer with the associated pressure surface dipping
downwards. In the lower layer, there is a dipole of high and low-pressure, slightly shifted.

. . .- . ad
» The distance/thickness between surface pressure level is indicative of the temperature (%):

- East of the upper level Low, they are far apart: the air is warm.
- West of the upper level Low, they are close together: the air is cold.
= The perturbation flow advects the warm air towards the north, while cold air is advected to
the south. Such a weather system transports warm air upward and poleward and cold air downward
and equatorward.

= On the one hand, this configuration is the configuration that perturbations need to exist
and grow. A configuration that has this westward slope with height leads to the extraction of energy
from the background state.

= On the other hand, this configuration is the configuration required to transfer heat to the
north and thus reduce the temperature gradient hetween the equator and the pole, releasing the
instability, flattening the isentropic slopes that are continually built up by the radiative forcing, and
dissipating the background jet. This is an example of scale interaction (see #GFD5).

3.4.j) Baroclinic instability: summary

1) There is clear evidence of a preferred scale for turbulent motion in the ocean and the
atmosphere.

2) Simple scaling arguments and more sophisticated stability analyses show that there is a
preferred scale for growth to occur.

3) |If this growth depends on extracting energy from sloping density surfaces (or equivalently
vertical wind shear or horizontal temperature gradients) then there must be an interplay
between vortex stretching and relative vorticity terms in the conservation of potential
vorticity.

4) This naturally select structures around the Rossby radius scale.

5) These structures can grow exponentially provided certain criteria are met, notably if there
are extrema (maxima and minima) in the potential vorticity of the basic state.
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2% order Equation

Solution and Properties

Dispersion relation

This chapter focuses on gravity waves, which leads to the study of coastal Kelvin waves (see
#GFD4.2) and extends the theory to equatorial Kelvin waves (see #GFD4.3 and #GFD4.4). Then, we
continue by discussing equatorial wave dynamics and its effects on tropical ocean variability
(see #GFDA4.5).

QG theory filters out
back to the one

GFDA4.1: Gravity Waves in a Rotating Fluid

fast gravity wayes

see
-layer shallow- f #GFDZ._;d)' 50 we come

water equations derived jn #GFD1.2

Atmosphere (p,)

4.1.a) Gravity waves in shallow water P, = cst

= Here is the one-layer shallow water system 1
(x, y-momentum, and continuity equations, see #GFD1.2f): h P,u,v
ov N %) n 13)
ot Y 9 on g H (Bu o

— 4 uf— 4ty =-h|—+

o o 9 on Ot x y oz @y
—+u v, — = —g—
ot x y 93.’1)

= Let’s start with something simple: a one-dimensional non-rotating linear system. The
shallow water system can be simplified as follows:
* A one-dimensional system in the x-direction, so we cross out the y-direction
terms (no v and no variations in ¥) and the y-momentum equation.
* A non-rotating system means we cross-out the two Coriolis terms.
* A linear system, so we can eliminate all the term which are quadratic in state
variables (i.e. the advection terms).

% There is a little subtlety in the continuity equation, as we do not completely remove
hg—z. We consider a constant average layer thickness H, such that - and linearize this
quadratic term by eliminating the product between the two state-variables (u and the

.. . . ou au
variations in layer thickness 1), so ha o Ha.

= This results in two equations: _

% We then differentiate the x-momentum equation with respect to t and differentiate the
continuity equation with respect to x, thus eliminating 1. This leads to the following second-order

ordinary differential equation for u: -

. . . . imaging :
= The solution for this wave equation writes: _ "V eXponentig/

= |t is the real part of some amplitude coefficient i times the classic imaginary exponential
propagation part:
- L is the zonal wavenumber (2 7 divided by the x-wavelength),
- o is the angular frequency (2 7 divided by the period).
This is a wave that propagates in the positive x-direction when [ > 0.

Trfgonometric Jfunction With

Sine prapagatfng in the

X > 0 direction,

= Taking a derivative of this trigonometric function yields the same function multiplied by some
constant coefficients: 0 ) 0 )
= ——tw = =i
ot x
% Substituting the solution and its derivative into the wave equation results in a relation
between frequency ® and wavenumber [ (with two other geophysical parameters: gravity g and
average layer thickness H): . This is the simple dispersion relation of a gravity wave, for
8ths) will not change

which the phase speed is constant: -
'ts propagation
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Solutions and algebraic system

» The phase speed does not depend on wavelength or
frequency. Waves with different wavelengths (or structures
made up of a collection of different wavelengths) travel at the

B
same speed and will propagate without losing their shape. We E
say that these waves are non-dispersive. 1
. d . £
® Their group speed d—‘;’ remains the same as the phase !
speed because it is just a linear relationship between wand . .
-3 -2 -1 0 I 2 3
Wavenumber ({)
4.1.b) Adding rotation
= The next step is to put the back into the linear system. We put the Coriolis terms

back. As the Coriolis force pushes perpendicular to the direction of movement, we have to go back to
a two-dimensional situation with 3 equations again. These are the single-layer linear shallow water

equations on a flat bottom and an with linear perturbations in u, v and »:
0 0
(?')_T; + fu= —gg—z
oLt (e gr) =0

METHOD1: To solve this system, we can use the same method we just used, i.e. judiciously
differentiate the equations in order to eliminate two of these three variables. This will lead to one high-
order differential equation for one variable (u, v, or 7). You might have done this before...

1) Derive the vorticity equation (d(2)/dx — d(1)/dy)

2) Derive the divergence equation (d(1)/dx + d(2)/dy)

3) Substitute the vorticity equation into the continuity equation

4) Substitute the divergence equation into the resulting equation

5) Differentiate with time and substitute with equation from step (3)

% With appropriate initial condition at t = 0, departures from geostrophic equilibrium follow:

Nee = gHVZ N + 77 =0
%, Searching for plane-wave solutions ( = fje!(*+*mY~®1)) yie|ds the dispersion relation:
w =1/ f? + gHk?

METHOD2: We can employ a more general (clever) method for finding wave solutions.
% It consists of substituting the plane-wave solutions ('u,, v, 'q) = (’ﬁ., v, ﬁ)ez(lw+my—wt)
into the 3 equations separately.

= Solutions have the form of an amplitude coefficient times an imaginary exponential:

- I is the zonal wavenumber (2 7 divided by the x-wavelength),
- m is the meridional wavenumber (2 7 divided by the y-wavelength)
- wis the angular frequency (2 7 divided by the period).

0 ) 0 .
= The derivatives become coefficients: a— — 4l x — —1m X — = —iwX
T

oy ot

& Substituting the solution and its derivatives into the

— WU — fﬁ = _iglﬁ linear system results in a , in

—iwh + fi = —igmi \Aih|~ch theNthree unknowns are the coefficients of amplitude
(@i, ¥, and 7).

—iwn + H (il +1mv) =0 % The parameters are the wave properties (1, m, and w)

and the geophysical constants (f, g, and H).
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Solution and Dispersion relation

4.1.c) Inertia-gravity (Poincaré) waves

= We can write this set of equations in matrix form, resulting in an algebraic system:

—iw —f gl U
f —iw igm o | =0
ilH imH —iw 7

= This equation is trivially satisfied if there is no wave-like perturbation (i = ¥ = 7j = 0).
= The condition for the system to be satisfied and for the wave to have some amplitude is that
the determinant of the matrix must be zero.

a b ¢ d f d
det| d e f |=asdetl € 7 |-bedet +c o det ¢
. h i g i g h
g h i

% It results in the dispersion relation for gravity waves in a rotating fluid:

. [w2 _ 52 —gH(l2+m2)] -0

k is the horizon tal waye
Number: |2 = 2 +

= The solutions are either:

mZ
* a steady geostrophic flow (@ = 0, no oscillation in time = a fixed stationary wave)

* a propagating wave that satisfies: @ = £+/f* + gHk?

If we set f =0 we recover the
dispersion relation for gravity waves in a non-
rotating fluid (see #GFD 4.l1a), i.e. non-
dispersive waves with a constant phase speed

c==,/gH.

w
\Ea

The additional f? under the square
root means that the relationship between w
and [ is not linear anymore.
% It is shown in the figure to the left: frequency
i as a function of wavenumber. When k > 0, the
oL . . s . . J wave propagates in the positive x-direction,

3 2 -l 0 I 2 3 and when k < 0, it propagates in the opposite
Wavenumber (k x L) direction

Frequency (w/f)
8

= Dashed lines are non-dispersive gravity waves without rotation (see #GFD4.1a).
* The red curve shows the system with rotation, i.e. adding 2 under the square root in
the dispersion relation. These are inertia-gravity or Poincaré waves.

For short-waves (large values of the wavenumber [) rotation does not make
much difference to the way the waves propagate. They behave like ordinary, non-
dispersive gravity waves.

For larger scales (wavelength much longer than the Rossby radius +/f?/gH),
the curve flattens out, so the frequency has a lower limit of f, and the waves become
very dispersive. At very small wavenumbers, the wave starts to behave rather oddly.
As the horizontal scale of the wave becomes larger, the becomes faster.
The slope of a line joining the origin to the curve gets steeper (see #GFD3.1d). But the

(the tangent to the curve, see #GFD3.1d) is equal to the phase speed for
short waves and then for larger scales, it disappears. So, there is no transmission of
information from one position to another, even though the oscillations that are
separated in space are perfectly coherent. This is not really a wave anymore. It is
coherent oscillations in space separated by some distance. In fact, it is just motion in
inertial circles. This is why the waves are called
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% It is a bit of a negative result. For large-scales, we have waves that basically collapse to
inertial motion. We are left wondering if there is a way in which we can have large-scale propagating
geophysical waves in a rotating planet. The answer is yes, and they are called Kelvin waves (see
#GFD4.2 and #GFDA4.3).

GFD4.2: Boundary Kelvin Waves

4.2.a) Adding a wall

= We need to introduce a constraint to the equations to add a lateral boundary to the problem.

y s, on
® T e

v on

o */% = 5y

(0.0) on 0 ov\
5 T H (Z{+ a—y) ~0

= In the x-direction, there is no flow through the wall (at x = 0), which suggests that we look
for a solution with u = 0 everywhere.

% This results in geostrophic balance (equilibrium between pressure Fp and Coriolis force Fc)
in the x-direction.

% In the y-direction, we recover the equations for non-rotating shallow-water gravity waves
(see #GFD4.1a). So, in the y-direction, we have non-dispersive gravity waves propagating northwards

or southwards with a fixed phase speed, independent of horizontal scales (|c| = /gH):

e ™

. d n Diagnostic equation:
{ fr=g B ) Geostrophic balance
 ov _ an )
dt g ay Prognostic equations:
an av Non-dispersive waves
—+H—=0
<‘_=_:> Q C_ID Q
.0(\
e l
\r\’?‘eo — —
Fe
Fp
P

= |f the fluid is heaped up against the wall, the pressure force will be pushing out into the fluid.
The pressure gradient force and the Coriolis force will balance and in the northern hemisphere (f > 0)
we will have southward flow.

= |f there is a dip against the wall pressure, gradient force is pushing towards the wall and the
Coriolis force balances this, so in the northern hemisphere (f > 0) the flow is northwards.
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Geostrophic equilibrium

% We will have oscillations between northward and southward flow alternating with the
crests and troughs of the wave, and the whole thing is propagating like a gravity wave along the wall.
These waves are coastal Kelvin waves.

= On the diagram, it is mentioned that the wave is propagating southwards. We have not
proved that yet and to do so we need to make a closer examination of the geostrophic balance
equation (see #GFD4.2b).

4.2.b) Geostrophic balance

y = Since the wave is , all signals must travel at the same speed
c= \/g_H The solution for v at y = 0 and time t must be the superposition of two
independent waves traveling in opposite directions:
ct4- lV1 A wave coming from the north V; (x, vy + ct)

{ A wave coming from the south 1, (x, y— ct)

% Anything at y = 0 and time t must consist of the sum of everything that
0 +——— was at a distance ¢ X t either to the north or to the south. Anything else has either
gone too far or has not arrived yet because there is only one speed that these waves
can propagate at.

= The corresponding surface displacementisn = /H/g(—=V; + V).

et Vs % This can be shown by substitution into the y-momentum equation:
] ’ ) ) Vi i
—WV+ Vo) =—+/gH —(—V1 + V — =c—
é‘t( 1+ Va) g By( 1+ Va) ~ 5 c By
o 1o Vs oVa
—(-V14+ W) =—ygH (V1 + V. P
&( 1+ Va) g ay( 1+ V2) ot c By

= To obtain the x-dependence of these functions, we use the

diagnostic equation, geostrophic balance, which gives: y
avy f v av, f V 1
. - T T —" H. T /=2
dx [gH 0x [gH \|
ct W
“These relations have exponential solutions with x. / l
Vi(x,ct)e ™ R and V, = V,(x,ct)e* R respectively, with a scale
distance of the Rossby radius Lg = ¢/f.
With x > 0 and f > 0: 0 >x x=0

f>0
* ¥, has a decaying exponential solution in x with boundary layer

width LR'
* VV, grows exponentially away from the wall, and so fails to
satisfy the condition of boundedness at infinity. This solution thus must

be eliminated (for physical reasons). —ct /l \

% We thus retain the solution V' that implies that coastal Kelvin
waves must propagate southwards (negative in y direction) along a wall
on the western side of the basin (x positive offshore) in the northern
hemisphere (f > 0).
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4.2.c) Properties of Kelvin waves

= So far, we have considered Kelvin waves on the western side of an ocean basin in the northern
hemisphere: = our x-coordinate was positive towards the ocean basin center (x = 0)
» The planetary vorticity was positive (f > 0).

% The only admissible solution has a zonal structure decaying exponentially offshore -

(nomr —= ) = On the eastern side of the ocean basin, the

Y x-coordinate is negative towards the center of the

-1—T —:I— basin. Following the same logic, with ; and I/, this
- :

change of sign leads to the conclusion that along a wall
on the eastern side of the basin the wave must
propagate northwards.

Equator

, f I . % In the northern hemisphere a Kelvin wave
f“} f?} j"‘jp keeps the coast to its right as it is pushed against it by
| souTH B ) the Coriolis force.

= As f-plane dynamics are isotropic in x and y, if we have geostrophic balance in the north-
south direction, Kelvin waves propagating in the zonal direction, along the northern wall of the basin
(negative y-coordinate) will propagate westwards. See Vallis (2017, #3.7) for the rotated equation
system.

% In the northern hemisphere Kelvin waves lean against the coast with the coast on their
right as they propagate.

As an illustration, this picture shows the English
Channel where the tides come from the Atlantic Ocean
through the channel. They can be described as coastal
Kelvin waves, leaning against the French coast. The
amplitude of the tidal variation is much higher on the
French side than on the English side: up to 11 meters near
St Malo, and only about 2 or 3 meters near Southampton.
This explains why a tidal power plant was built on the
French side.

= In the southern hemisphere f changes sign, so all these considerations are reversed, and
Kelvin waves propagate with the coast to their left.

% Kelvin waves propagate around the basin anti-clockwise in the northern hemisphere and
clockwise in the southern hemisphere. We are left wondering what happens when coastal Kelvin
waves meet at the equator, along the Brazilian coasts for instance. In fact, they can carry on along the
equator as equatorial Kelvin waves, propagating eastwards along the equatorial waveguide. Then, at
the eastern boundary (African coast), the equatorial Kelvin waves will continue poleward in each
hemisphere.

L Imagine that you put a wall along the

ok S ) equator. It would be a southern boundary in the

I northern hemisphere and a northern boundary in the

1 southern hemisphere. In both hemispheres, Kelvin

Equatr | N Ny _/ waves can lean on this wall and propagate eastward.
P =\ Suddenly, the wall collapses, and the Kelvin waves in

each hemisphere can just lean against each other as

I 1 they travel eastwards along the equator. This can only

[ soun — ) happen on the equator where the sign of f changes.

See #GFDA4.3 for theoretical details.
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Equatorial radius

GFDA4.3: Equatorial Scaling and Kelvin Wave Solution

4.3.a) Scales of motion near the Equator

= Let’s focus on the equatorial region. At the equator:
= The latitude is zero (-)
* The planetary vorticity is also zero (f = 0).
= The variation of the Coriolis parameter with distance y in the north-south direction

= We can use the f approximation. Unlike in the extra-equatorial regions where
f = fo + By, at the equator f; = 0 and thus the [f-approximation is reduced to - .

Ja'H
= The Rossby radius is the typical scale of motion: Lp = A;—H = % =< Inthe mid-latitudes,

this works fine. Close to the equator, it does not work as a useful scale because f = 0. We thus have
to consider another way of imagining what the relevant scale is at the equator.

= On the left is a sketch showing circles that describe
the Rossby radius as a function of latitude. As f decreases
approaching the equator, the Rossby radius gets larger.

. > There is a critical latitude ¥ = R,,, where the Rossby
LR — Req circle first touches the equator and the center of the circle is

exactly the Rossby radius away from the equator. This distance
R4 can be defined as the equatorial radius.

> Using the -approximation at y = Req (f = BR.q) and Ry = L = ﬁRL, it follows that:
eq

= To evaluate the amplitude of 140°E 160°E 180° 160°W 140°W 120°W 100°W

this scale of motion at the equator, we - 32
have to quantify the phase speed of the 28
gravity waves: ¢ = \/gT N
% The diagram on the right 2 F By
presents the temperature as a function of : : e
depth and longitude in the equatorial =, F
Pacific, from in-situ TAO data. The region a 2
of strong vertical gradients is called the B
thermocline. In a conceptual one-layer
shallow water model, it separates the S}

active layer from the resting abyss layer.

= The change in density across the thermocline is ~2kg/m> for an average density

~1000kg /m3. This gives a reduced gravity of the order of g’ = g % ~0.02m.s72,

= The typical depth of the thermocline in the equatorial Pacific changes quite a lot with
longitude. It ranges from a couple of hundred meters in the west to a few tens of meters in the eastern
basin. We approximate H~100m.

% Internal gravity waves propagating on the thermocline have a phase speed

c=+gH~V2=14m.s7?
* The equatorial radius of deformation is R, = \/—g ~ 250km ~ 2.2°

* The time T, for a wave to travel distance Roq is Ty = ~ 2 days

L
VBe
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4.3.b) Linear equatorial shallow water model

= Let’s analyze the shallow water equations for a
conceptual equatorial model consisting of one active layer with
a rigid lid overlying a motionless abyss.

* We use the # approximation at the equator: f = fy.
The shallow water equations (see #GFD1.2g) are:

ou B ,%
ot —Byv =g ox
ov __,0n
on Ou Ov\
ot (5 3y) =

% This slight change, going from an f-plane with a constant coefficient f (see #GFD4.1b) to
an equatorial B-plane in which there is a y tin the Coriolis term will yield some slightly different results.

4.3.c) The equatorial Kelvin wave solution

= We start with a special case in which there is no flow across the equator. This is the Kelvin
wave framework, just like when we had a wall (see #GFD4.2a). The flow is along the equator (1) and
v = 0 everywhere.

= The equations simplify to:

13 ﬁ U — — ,@ Cross-equatorial
t yu=-—9g Oy Geostrophic balance
ou ,0n
- — _g -
ot / Ox Non-dispersive waves

on ou 0 c=+g'H
gl == —
o " (ar *ﬁg) °

% We obtain a set of equations similar to the one we had for the coastal Kelvin waves (see
#GFD4.2a), i.e. 2 prognostic equations consistent with propagating along the

equatorial wave-guide with a phase speed € =4/g'H (%) and a diagnostic equation for cross-
equatorial geostrophic balance, that will determine the meridional structure of the waves.

= Using the same logic as before (see #GFD4.2b), the solution for u at x = 0 and time ¢t can
consist only of the superposition of two independent waves traveling in opposite directions:
A wave propagating westwards U, (x + ct,y)
4[ A wave propagating eastwards U, (x — ct,y)

% Anything at x = 0 and time t must consist of the sum of what was at a distance ¢ X t either
to the east or to the west. Anything else has either gone too far or has not arrived yet because there
is only one speed (c) at which these waves can propagate.

Uz U1
/\ /\
! . | > X
—ct 0 ct
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H
= The solution for 77 can be written in terms of Uy and Uz, as 7= 4 —(=U1 + Us)
g

This can be verified by substituting the solution into the prognostic equations.

= As in #GFD4.2b, the cross-equatorial geostrophic balance informs us about the meridional
structure of the wave and we will consequently discard one solution.

%, To proceed, we substitute the solutions for u(x,y,t) and n(x,y,t) into the diagnostic
equation. The following expressions must be satisfied separately:

. U, _ U,
ﬁyl—cay ByU, = Cay

B2 _B 2
= These relations have exponential solution with y: U; ~e2<” and U,~e 2¢” respectively.

% Only the solution U5, i.e. the wave propagating eastward, is exponentially decaying in yz.

¥ Note the difference with coastal waves that depended on non-zero f, and thus, y. Now we

have a yz dependence (because of the extra y in the equation set, see #GFD4.3b). The decay works
both to the north and south with the same propagation direction.

= The scale distance of these wavesis ./ /2¢c = 1/2R§q (see #GFD4.3a) and it is symmetric

about the equator. Kelvin waves decay away from the equator regardless of whether y is negative or
positive. Equatorial Kelvin waves are equatorially trapped.

4.3.d) Equatorial Kelvin wave properties

= The equatorial Kelvin wave solutions for the three variables (u, v, ) can be written as a
function of Y, a dimensionless waveform that propagates in the x-direction:

2 2
u=ci(x—ct) e ¥ e
v=0
2 2
n=Hy(z—ct) eV />R
= Kelvin waves are a special solution for equatorial waves for which v = 0.

= non-dispersive waves
They are: = trapped at the equator

= propagate eastwards at a phase speed ¢ = /g'H

GFDA4.4: Equatorial Waves — General Solution

4.4.a) The general solution

= To derive the general solutions for equatorial waves, we substitute wave-like solutions into
the equatorial shallow water equations (see #GFD4.3b):

ou . ,0n
o Pyv=-95,
ov ,0n
5¢ TPy =g By
on Oou Ov\

4.3.d) Equatorial Kelvin wave properties 97



Expected wave structures

Wave-like solutions

Harmonic (wave) equation

= We first consider different types of wave structures that we might encounter. Below,
colored circles represent the geostrophic stream function (n, the depth of the thermocline in the Ocean
or surface pressure in the Atmosphere). Positive 7 anomalies are in red, negative in blue, associated

with anti-cyclonic and cyclonic circulation respectively in the northern hemisphere.

/" 4-\ A e~
* The first example (left sketch) is symmetric about the equator, i.e. positive/negative
anomalies in n north and south of the equator. The rotational flow around a positive anomaly is
clockwise in the northern hemisphere and anti-clockwise in the southern hemisphere. It is the other
way around for the negative anomalies.
% 1 is symmetric and so is the zonal current (u). But the meridional current (v) is anti-
symmetric about the equator, so v is out of phase by a quarter of a wavelength — in quadrature.

P

\S < o=

rotational flow divergent flow

* The second scenario (middle sketch) shows anti-symmetric thermocline perturbations
associated with symmetric v. Extrema in v are displaced by a quarter of the wavelength.

* Not all the solutions have rotational type flow. Let’s picture a divergent type flow. The third
sketch exemplifies the equatorial Kelvin wave solution. v = 0 and there is a convergence/divergence

between equatorial positive and negative n anomalies. It is associated with downward/upward
movement of the stream function. This configuration is consistent with eastward propagation.

= We thus look for wave-like solutions that propagate along the equator (x-direction,
positive or negative). For v, we have added this E as a phase displacement for the solution, so:

u= ﬁ(y)eiax—wt) l is the zonal wavenumber

v = )ei(ix—wmg) % The amplitude coefficient
. Y i(be—wt) ) depends on y. This is going to

n=17e complicate the resolution.

% We substitute these solutions into the equatorial shallow water equations and (after a
laborious process, see m on the next pages) we obtain a harmonic (second-order differential)
equation for the amplitude ¥(y):

dép— < w? Gilieee
—+—=(Y?2-y%)P =0 Vi=|—=-1P-—]|=
% It is not an algebraic linear equation because of the y-dependence in of U.

2
= In this equation, there is a coefficient f—z(lf2 —y2) in front of ¥. It can be positive or
negative depending on the sign of Y2 — y2,

= |n the vicinity of the equator, y2 < Y?, the coefficient is positive and the spatial structure
of the solution will be oscillating in y.

= Qutside the ¥-bound (y? > Y?), the coefficient is negative and the equation admits
exponentially decaying solutions.

% This portrays a picture of the zonally-propagating wave
where near the equator the spatial structure is an oscillation and at
a certain distance, it just decays away to zero. The wave is trapped

at the equator and Y is the width of the equatorial waveguide. As

the expression of Y depends on various properties of the wave : i : >y
(w, B, ¢ =+/g'H, 1), different waves will have different widths but it -Y \/ 0 V Y
basically scales the wave structure in a similar way to the equatorial

radius (R,.,) for the Kelvin waves.
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Derivation of the equatorial wave equation for v

( - 4
%u' — Byv = _QI? g = ,&(y)ez(k:c—wt) = ﬁ(y)ez(kx—wt:tﬂfz)
A oy n=i@EET) = g(y)eitenetin2
~ E + ﬁyu =t a_y — :tt'?j(y)ei(k'r_wt)
on ou Ov v in quadrature with ,
ot H or + Su = + or - makes no difference, we choose +
\

—iwii — iByd + ig'kii = 0

We want to eliminate u and »n to get an equation for v.
wﬁ+ﬁyﬁ+g’a—n =1
3y We drop tildes and prime on g, and we use subscript notation
O for derivatives. The linear system can be written:
e 2 Py .0V
—iwn+ H |iki+i— | =0
Ay

wu+ Pyv—gkn=0 (1)
wv+ﬁyu+gg—z=0 (2)

—wn+Hku+Hg—;=0 (3)

0/0y(1) + k x (2) — wuy + Bv + Byvy + wkv + Byku=0  (
w X (2) + g x 8/0y(3) — w?v + Bywu + gHku, + gHv,, =0 (B)
w x (1) — gk x (3) = w?u + Bywv — gk? Hu — gkHv, =0 (

o gHkx (A) —wx (B) —
gHk(Bv + Byv, + wkv) + gHk?Byu — wiv — Byw?u — gHwuy, =0
—gHwvy, + gHkByv, + (gHKB + gHwk® — w®)v + (gHK*By — Byw?)u=0 (D)

= (D)+ By x (C)—
—gHwvy, + gHEBYv, + (9HKB + gHwk? — w?)v + B2y*wv — BygHkv, =0

2~ 2 2
c>+—gHw—>dv+ W _gp_ kB _ P

2| =
dy? ' |g’H w g'Hy]U_O

dy?  c? v = 7 2 -

2% ﬁz c is the gravity wave speed)
or — 4+ —=(Y2-y)5=0  where _gH[w? kB
gH w
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4.4.b) Meridional structure

= The general solutions of the ¥ harmonic equation have the form of a discrete set of

meridional structures:
v Hy(y)e 2 (¥ =y/Reg)

% ¥ is the product of a Hermite polynomial (H,,) and a decaying exponential. This is similar
to what we had for the meridional structure of equatorially-trapped Kelvin waves (see #GFD4.3c),
except that now it is multiplied by the Hermit polynomial. The product of these two functions is called
a parabolic cylinder functions.

= The Hermit polynomials are defined as: Hj (y') =1
Hi(y") =2y’
H(y') = 4y'* - 2
Hy(y') = 8y" — 12y’
H,(y") = 16y’* — 48y'* — 12

% They have mathematically-useful properties such as H, can be written in term of the
previous and the next polynomial and there is a simple expression of the derivative:

'H Hyoy 4 H il P
=nH,_ = = 2nH,_
Yy Hy n=1 T 5Hn41 dy’ n-1
0.8 e
. 024 | * For even numbers n, H,, (y") is symmetric about the
0.4 \ /\ | | equator and so is . The symmetric meridional structures are
0.2t V [\ N . illustrated on the left forn = 0,2,4.Forn =0, 7 < e /2,
| . . . . .
0 \ / \ l.' for n = 2 there is a single wiggle in the middle, forn = 4 there
-0.2 | /ﬁ \ . are two wiggles in the middle, etc...
-0.4 \/ \ % These structures are associated with a cross-
06 equatorial flow and create thermocline displacements
- ) 0 > p asymmetric with respect to the equator (i.e. a maximum in the
yilg thermocline displacement on one side of the equator, and a

minimum on the other side).

¢ For odd numbers n (n = 1, 3,5, ...), the meridional
structures of the equatorial wave are anti-symmetric in v and
changes sign across the equator. As n increases, the number of
wiggles increases too.

% These structures are associated with no cross-
equatorial flow (convergence/divergence) and symmetric
thermocline displacements.

% The Kelvin wave solution is not in this set of solutions, because it is associated with v = 0.
You have to consider n = —1 and in that case, u and 17 will be symmetric.
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4.4.c) The dispersion relations

= To derive the propagation properties, we substitute the general parabolic cylinder function
solutions into the differential equation (see m on the following page). This leads to a set of

dispersion relations: w2 Bl B (2n+1)

c—z—lz—z=(2’n+1)

= -
c Req

% These are the theoretical dispersion relations for shallow water modes on the equatorial
[B-plane. This is a family of dispersion relations w = w(l,n) for distinct tropical waves (including

equatorial Kelvin waves) associated with discreet values of n (index for the Hermite polynomials).

= As the dispersion relations are cubic in w, there are 3 mathematical roots for each value of
n = 1. Positive roots are represented below: w as a function of the zonal wavenumber [. For [ > 0,
equatorial waves propagate eastwards, while for [ < 0, they propagate westwards.
* For high frequencies (w > 1), we can neglect

R,_,qw Bl
= to obtain w? = (2n+ 1)Pc + c?l?. This is a

dispersion relation for equatorial inertia-gravity
waves, They propagate in either direction and are
similar to inertia-gravity waves in mid-latitudes (see
#GFD4.1c). The dispersion curve has a minimum
frequency that depends on n. It is slightly off-centered
(not completely symmetric) because there is the f3-
effect in the equations.

C.ll

Inertia-Gravity ¥
waves

n=3

2
. w
* For low frequencies, we can neglect = to

obtain @ = —lz_i_(zf—j_img‘?. These are equatorial
Rossby waves similar in principle to their counterparts
in mid-latitudes (see #GFD3.1f) that critically depend
on the ff-effect. They propagate westwards, but their
group speed can be eastwards for high wavenumbers.

% There is a mathematical solution for a negative w.

eq

* Between inertia-gravity and Rossby wave solutions, there is a hybrid solution for n = 0. At
low frequencies, this wave propagates westwards and behaves like a Rossby wave. And at higher
frequencies, it propagates eastwards and behaves like a gravity wave. This wave is called a mixed
Rossby gravity wave or Yanai wave.

* The blue straight line corresponds to non-dispersive waves that propagate eastwards along
the equator. These are the equatorial Kelvin waves (see #GFD4.3) which behaves like a gravity wave
in absence of rotation (see #GFD4.1a).

4.4.d) Waves properties
= Let’s have a look at the two-dimensional structure of some of these tropical waves.

n=1 I*= * First is the Rossby wave structure for n=-10'=1

Equatorial Rossbywave 1 = 1. Contours shows the north-south Equatorial Kelvin wave
symmetric 1 (the stream function, or dips in the
thermocline or high-pressure areas in the
atmosphere). The geostrophic flow circulates
around 7 perturbations and arrows depict the ,
anti-symmetric meridional flow. This wave of-«-
propagates towards the west.

* Putting n = —1 into the dispersion
=) 3 relation yields an eastward-propagating non-
Y - owna  dispersive Kelvin wave with v = 0, associated g
-m -m/z 0 @2 m \ithalternate convergent/divergent zonal flow. T ~7/2
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Derivation of the dispersion relations

dv 1
—+—(Y2-y*v=0
2

[c 2 w L 2

Req: E, Y — (g—k — :) R:q {= (2n+1)Req
1 d*v 1
r_ Y, — Y Yl2 _ 12 2 —
Y y/Req: /Req — qu dy,g ar qu( Yy )UReq 0
. . d2v 2 2 2/0

dropping primes d_y2 +(Y*—9y*)v=0 solution v = Hpe ¥/

should lead to non-dimensional dispersion relation Y2 = 2n + 1

using % =2nH, 1 and yH,=nH,_|+ %

dv dH, 2 2 dH, 2
— = eV /2 _yH e V/2= |20 _yH.| eV /?
dy ~ dy yine [ ay Y "] ‘

@ dHn dHﬂ+l

= |H, +y—= — — y(yH, — H, -v*/2

g [ +y dy dy y(y +1)] e

= [H, + 2ynH,_ = 2(n + 1)H, — y*H, + yH, 4] e7¥"/?
= [Hp +y(2nH,_y — yHp + Hot1) — 2(n+ 1)H, ] e V"2

= [-H, — 2nH, + y*H,] e ¥'/2

so [P~ @n+ 1) Hye ™2 4+ (V2 ) Hpe /2 = 0

thus Y2=2n+1
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* Inertia-gravity waves have divergent structures and they can propagate either eastwards or
westward. Eastward/westward structures look fairly similar but they are not exactly the same because
there is a slight asymmetry between the two directions.

* Mixed Rossby gravity waves have anti-symmetric structures in 77 and a mixture of rotational
and divergent flow. They can propagate either eastwards or westwards.

GFD4.5: Equatorial Waves — Special Cases and Examples

4.5.a) Equatorial Rossby waves

= At low frequencies (long-wave approximation), close to the origin point (where w = 0),
w K f.In the theoretical dispersion relationships for shallow water modes on the equatorial f§ plane
(w?/c? =17 = Bl/w = (2n + 1)R;, see #GFDA4.4c) we can neglect the first term in w? and it
rearranges to:

_ Bl
124+ (2n+ DR.S

% This is the dispersion relation for long equatorial Rossby waves. It is very similar to mid-
latitude barotropic Rossby waves (see #GFD3.1). We now have (2n + 1)R;q2 in the denominator

where we had L% (the Rossby radius) for the mid-latitude Rossby waves in a one-layer model
(see #GFD3.1f).
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i kA
L 1 4 1 T
-3 -2 -yt -1 0

= For shorter waves the phase speed remains westward, but the group speed hecomes
eastward. These short-waves are of little importance because they are very dispersive. They are hard
to observe because they are slow and dissipate.

= As in #GFD3.1f, for small wavenumber (I << 1, long-waves)

<l ) and

equatorial Rossby waves are almost non-dispersive (w = — Py

can be detected on equatorial Rossby rays.

= The dispersion relation is fairly straight at the origin and then curves
round to a maximum frequency. The latter corresponds to zero group speed.
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4.5.b) Equatorial Rossby rays

= It is important to recall that as the wave propagates its dispersion relation changes. This is
because the wave may change latitude, and f enters into the dispersion relation.

% The propagation of Rossby waves can be traced along the equatorial Rossby rays by
computing the ratio of the group speeds (as in #GFD3.2c or #GFD3.3c). This provides the trajectory %.
We consider here that f is “slowly varying”. For long Rossby waves, the direction of the group speed
is given by:

dx _dw/dn _ 2w( Bl p2y*\'*
dy dw/dl B\ w 2

1

c?l\2 2w
= The integral yields an equation for the latitude: y = — w_ﬁ cos (Tx + 90)

%, Rossby waves of constant frequency and
zonal wavenumber will change their meridional T
wavenumber and thus their direction of propagation. e, k

* They end up oscillating about the equator
by refraction: just like if the equator had a high-
refractive-index and waves were attracted towards
regions of high-refractive-index. It is another way to
show that equatorial Rossby waves are equatorially
trapped.

* This behavior is modified by the presence of
a mean flow (current, winds).

4.5.c) Oceanic adjustment

= Here is a practical example illustrating how the Ocean will adjust to an initial thermocline
perturbation. Below are snapshots from an ocean shallow water model simulation.

* In this experiment, at £ = 0, a bell-shaped perturbation to the thermocline is allowed to
dissipate. Initially, the thermocline has been artificially pushed down (downwelling) in a symmetric
round-blob like structure, resembling a Gaussian or cosine squared.

* 10 days later, the induced flow field (a) and thermocline displacement (b) emerge. We
observe a symmetric single bulge Kelvin wave (n = - 1) propagating eastwards, while a symmetric
dipole associated with a double bulge Rossby wave (n = 1) propagates westwards.

* At t = 20 days, the two structures are completely separated. The equatorial Kelvin wave
propagate faster than the equatorial Rossby wave. This is consistent with the slope of the dispersion
relation for long-wave approximation (¥ see #GFD4.4c).
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4.5.d) ENSO theories: the delayed oscillator

= This was put forward as a candidate for the explanation for the life-cycle of El Nifo.

% El Nifio is a perturbation to the depth of the thermocline and the sea surface temperature
in the eastern equatorial Pacific Ocean. El Nifio starts very often with an abrupt change in the surface
wind-stress forcing, a westerly wind anomaly in the equatorial western basin. The thermocline is
pushed down (downwelling) ahead of the wind anomaly and pulled up (upwelling) behind it. The
thermocline perturbations propagate eastwards as a downwelling Kelvin wave and westwards as an
upwelling Rossby wave. The combined effects of the two waves will tend to flatten out the
thermocline, resulting in a warming of the eastern Pacific temperatures.

SCEMATIC SURFACE CURRENTS and THERMOCLINE DEPTH
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= A ~couple of months later, the downwelling Kelvin wave arrives at the South-American
coast. Part of its energy is transmitted along the coast as coastal Kelvin waves, but a significant part
reflects into a downwelling Rosshy wave. This amplifies the deepening of the thermocline in the
eastern equatorial basin and increases the sea surface warming.

= When the wind-forced upwelling Rossby wave arrives at the other coast, it reflects and
transforms itself into an eastward-propagating upwelling Kelvin wave. (In its third life, it will also
reflect into an upwelling Rossby wave.) Along their propagation, these upwelling waves will raise the
thermocline depth and thus cancel the original wind-forced perturbation.
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% This theory is called the delayed oscillator theory: The initial El Nifio perturbation sows the
seeds of its own destruction a few months later after these waves have crossed the Pacific Ocean and
come back again.

= It is one of the theories to explain the El Niiio cycle but it is not the only one.
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4.5.e) Tropical convection in the atmosphere

= Here is an example for the

K > Divergence » downward motion > evaporation > clear sky
atmosphere. The equatorial theory

@ = Convergence » upward motion > condensation > clouds

developed in this chapter was n=11=1 n=-1I=1
Equatorial Rosshby wave Equatorial Kelvin wave

presented more from an ,

oceanographic perspective, but it -

works just as well in the atmosphere.

% The main difference is that
the equatorial radius is much wider:
the geophysical parameters are such
that the equatorial zone in the
atmosphere is not just a few hundred
kilometers (see #GFD4.3a) but is
~ the tropical band, namely 20°S-20°N
(the width of a Hadley cell).

= The figure below is the
Wheeler-Kiladis diagram (from Wheeler and Kiladis, 1999). Observed atmospheric tropical variability
is plotted as a function of its zonal and temporal scale. The red noise background is first filtered-out
(this removes substantial part of the variance that does not have much structure) and the variable is
separated into its meridionally-symmetric and anti-symmetric components with respect to the
equator.

% For instance, the symmetric component of vertical velocity (left panel of the figure below)
shows variability patterns that line-up nicely against the theoretical dispersion curves: Kelvin (n = —1),
Rossby (n = 1), and Inertia-gravity waves (n = 1). The anti-symmetric component of the precipitation
(right panel of the figure below) is consistent with the mixed Rossby gravity wave (n = 0).
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% The equivalent of H (previously the thermocline depth), used to compute the theoretical
curves is some height in the atmosphere, but it is not the whole depth of the troposphere. It is a bit
more complicated because H is modified by convection. But if you pick the right value, you can find a
curve that lines up with the observed variability.

In the next chapter, we will discuss scale interactions. So far, we have primarily focused on
linear dynamics. We will now go full nonlinear and investigate scale interactions and turbulence.
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= So far, we have focused on linear dynamics. We considered perturbations to the flow and
these perturbations remained small, so quadratic terms in the perturbation could be neglected. This
is equivalent to making a separation between a basic flow and the perturbation. In #6FD3.3 and
#GFD3.4, we discussed instabilities and found conditions under which these perturbations can grow
exponentially. We are left wondering what happens when the perturbations become big enough that
they can no longer be considered small relative to the magnitude of the background flow or its
gradients? How does the perturbation interact with the mean flow?

% So, in this chapter, we will introduce the idea of scale interactions in the atmosphere and
ocean. We will see how these transient systems can modify or interact with the mean flow.

= We will see how transient systems can be involved in large-scale forcing and transport, i.e.
how perturbations can transport properties and contribute to lower-frequency heat and momentum
fluxes and potential vorticity (see #GFD5.1).

= As we cannot represent every single little transient system, we will look for a systematic way
of representing their aggregate effect, their statistical effect, on the average flow (see #GFD5.2). Can
their effects be represented in terms of lower-frequency variations or average flow? This is closure.
One simple approach to closure is to consider these transient systems as a form of diffusion. Barotropic
or baroclinic gradients in the mean flow can create instabilities (see #6FD3.3 and #GFD3.4), and these
transient systems can in return eliminate the gradients by diffusion.

= |n this way, transient systems can modify large-scale potential vorticity. We will look at some
examples in which transient systems affect large scale Ocean circulation (see #GFD5.3).

= We will also review some atmospheric examples of how transients interact with long-lived
features to influence low-frequency variability (see #GFD5.4).

= Then, we will study the atmospheric response to other types of forcing anomalies. For
example, we will see how the atmosphere responds to a change in the sea surface temperature, and
how this basic response might be modified by the response of the transients (see #GFD5.4b).

= Finally, we will see how the flow on rotating planets tend to organize itself into zonal Jets
(see #GFD5.5).

This chapter will also serve as an introduction to turbulent dynamics.

GFD5.1: Scale Interactions and Transient Forcing

5.1.a) Atmospheric illustration: 250mb relative vorticity

= The video shows the relative
vorticity in the atmosphere at 250 mb (from
ECMWF ERA-Interim reanalysis) during
boreal winter time (DJF).

% The patterns are very turbulent,
portraying eddies propagating eastward in
the extra-tropics.

= If you stare at these transient systems for long enough you can pick out some features:

* The variability is more active over the oceans than over the land and the northern Atlantic
and Pacific Ocean basins are storm-track regions (see #GFD1.1e).

* Focusing on the western Pacific variability - the upstream part of the Pacific jet — we observe
that features appear to be stretched out in the zonal direction, while towards the east, turbulent
patterns seem to be stretched out more in the meridional direction.

L, This is pretty systematic and as a result, there are consequences for how these transient
systems interact with the Jet which they are traveling on (see #GFD5.1d).
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5.1.b) Ocean illustration: Re-stratification of the Labrador Sea

= Here is an example of heat transfer by POTENTIAL TEMPERATURE at 188 m
05/07/1956

transient systems influencing the mean state.

The figure shows the potential
temperature in the Labrador Sea at 165-meter
depth from a model simulation, between
Greenland and Canada.

% We see a very strong annual cycle. A
sudden cooling at the surface (blue) marks the
arrival of winter. It is associated with cold winds
coming off Labrador. This cooling is convectively
unstable and it is therefore mixed in the vertical
very rapidly. As a result, the whole water column is
cooled down to the bottom of the ocean.

= After the winter, how is the stratified
state reestablished?

', Heat is transferred by turbulent eddies. The “warm(er)” coastal current flowing around the
Labrador Sea, along the Greenland and Canada coasts, is associated with strong gradients between the
coast and the center of the basin. They favor the development of geostrophic eddies which transfer
heat into the center of the basin and gradually re-establish the stratified state for the following
summer.

5.1.c) Example: Momentum transport in zonal jets

Here is an example in which transient eddy feedback maintains the mean flow. Let's think
about zonal jets and momentum transport in zonal jets.

= We put a cyclonic eddy in a zonal jet. The figure shows a typical eddy
(a closed contour) advected by a sheared zonal jet, maximum at the center.

What will be the effect of the jet on the shape of this eddy?

% It will shear it out. It will gradually change its shape as it goes
downstream. This inspires a fresh fruit analogy, i.e. turning an orange into a
banana.

= And the fact that the eddy ends up looking
like a banana is important for the general circulation. _—........)
The variations of the jet follow this equation:

U +uuy +vuy = f(v —vy) =D

% There is a balance between the time variation plus the advection
terms, and f(v — v,) (Coriolis and pressure gradient forces bundled into one

term using the geostrophic wind) plus the dissipation.
= Taking the time average of this equation shows that the jet is diffused by dissipation and
powered by the momentum fluxes, i.e. mean dissipation is balanced by the quadratic advection terms:

Y Tord —
u'uy +v'uy, = =D
% The fluxes of momentum can be reformulated as the divergence of a flux, i.e.:
(w'v')y + (u'v')y = =D+ u'd .Theterm --a covariance between u’ and v’ - is the most

important term in this equation.
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Reynolds decomposition

= We can estimate its contribution by looking at the flow as it goes around u-

one of these banana-shaped eddies. vt
¢ In the northern half of this eddy, the perturbation flow is going
northwestwards so there is a negative covariance between u’ and v'. On the way
back, u’ is positive while v’ is negative, i.e. a negative covariance between u' and v’
* In the southern half of the eddy, the flow is either southwestward or

. Py . ] ] 'U-’+

northeastwards, with a positive covariance between ¢’ and v'. "

v

& In the north, we observe a southward flux of eastward momentum, while in
the south there is a northward flux of eastward momentum. This gives rise to a
convergence of momentum flux which will accelerate the jet towards the east and
help to maintain the jet against the dissipation term on the RHS. This is how the jet is
maintained by mature finite amplitude synoptic systems.

An that gets stretched out and deformed by a jet, will produce a
convergent momentum flux that maintains the jet against dissipation.

5.1.d) General consideration for tracer transport

= Let's formalize this by considering this generic non-linear system. The tendency equation
with advection and forcing of a tracer g (potential vorticity for instance) can be written:

0q .
E'FV.VQ—.? D

a . . . . o
N a—f plus the advection term equal sources and sinks, i.e. forcing and dissipation.

* The forcing could be the wind stress for instance and dissipative sink could be diffusion.
* The advection term can be written as a Jacobian of ¥ and q (J(¥, q)) (see #GFD2.3h):

aq ]_'(!P. q) is the advection of g by this non-
a —|— J('Ivb’ q) = f — D dNei?gent flow associated with the stream
function 1, such that 3 = _z_ga,.,d = G

dx
= We now split up the flow (of which the potential vorticity g is a diagnostic) into two
components, the average flow (noted with a bar, § and 1) and the perturbation flow which is varying

in time (noted with a prime): _ and _ The tendency equation can be written as

follows:

o, Jp, Q)+ J(,d )+ J(W,q) + J(¥',d)=F - D

at mean flow linear waves turbulence
advection

% The non-linear quadratic advection term is split into four terms:

1) mean flow advection: the mean potential vorticity being transported by the mean flow.

2) 2linear terms: perturbation PV being transported by the mean flow and the perturbation
flow transporting the mean PV. These terms gave us waves and instabilities.

3) aquadraticterm J(¥',q").

% In chapters 2, 3 and 4, we neglected the contribution of the quadratic term because it is
quadratic in the perturbation and the perturbation was small. If the perturbation is not small anymore,
this term is not negligible and we need to study what this term does.
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= If we are interested in the systematic effect of this quadratic term, its non-zero time mean,
we can form the time mean of the tendency equation, leading to a budget equation for q:

J(Ea q) = —J(Tl)’, q’) + 'T S 5

transient “forcing”

% The advection of the mean tracer by the mean flow will be balanced by the mean of the
forcing, the mean of the dissipation, and the mean of this transient forcing term. So, we now put this
term on the RHS of the budget equation and consider it as a forcing term, a forcing by the transient
fluxes. We discussed this in #GFD1.1e.

= Just in passing, we note that for the special
case of time-independent unforced flow (no time
variation and no forcing/dissipation) there is a time-
independent conservation law so that advection is
equal to zero:

J@,q) =0

% g would be strictly a function of
(g = q(3)) meaning that contours of g would overlay
contours of 1. This describes a closed circulation -
q contours coincide with Y contours. We will come
back to this no-advection state in which nonlinearity
is associated with closed circulations in #GFD5.3c.

% The figure shows some turbulence. Closed
contours for which J(y,q) = 0 can be considered
either for little turbulent eddies or for something
much bigger like ocean gyres.

GFD5.2: Effect of Transients on the Mean Flow: Closure & Diffusion

5.2.a) Forcing due to transients: Closure

= Imagine we wish to simulate or predict the slow, large-scale flow. Because the system is
nonlinear the fast, small-scale component (maybe unresolved) will affect the slow, large scale
variability.

% Closure is the systematic study of how we can represent the feedback of the on
the lower-frequency flow variation.

= Consider a non-linear development of a zonal wind u according to the following abstract
non-linear equation: du

E—i—uu—kru:o

% The term uu is quadratic and ru is linear. It is an idealized generic equation.

= Let’s examine this equation in term of low-frequency variations by taking the time average
or the low-frequency component: du

— Hui+ri=0

% We want to solve this equation for ii. The problem is that we don’t know uu:

uu Fuu ,itis uu = uu + u'u

L In 7w, there is the contribution of the transients that need to be addressed.
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= If we try to write an equation for the quadratic term uu (by multiplying the non-linear
abstract equation by u), we end up with an equation in which there is a cubic term uuw, which is of no
help: 1d
——uu + uwuu + ruu =0
2 dt
= We can do it again as many times as we want but at some point, we will need to represent
the (n + 1)"-order term in terms of the n'" order term.

% To keep it simple, we will need to represent the quadratic term u'u’ in terms of the mean
flow. And to do so, we must make additional physical assumptions. This is turbulent closure.

5.2.b) Diffusion and diffusivity

= There are various approaches to closure and one we have already mentioned is diffusion.

We can use diffusion to represent the systematic effect of transients in terms of the mean flow. We
make the analogy that the effect of the transients is similar to molecular diffusion.

% In a metal bar which is hot at one end and cold at the

haud froid e .
gian . other, molecular diffusion will transport the heat from the hot end

- —»  \__pare to the cold end and gradually the temperature will become
transfert thermique stalli . .. . -
m par conduction métallaue niform. This is because heat is transported downgradient.

% Here, we assume that geostrophic eddies act in a similar way. If there is a gradient in some
larger-scale field, the geostrophic eddies will tend to smooth out this gradient.

= Let’s go back to our tracer equation and consider a diffusive representation for the flux of
the tracer g. For the moment, we ignore other forms of forcing and dissipation. We consider advection

by a non-divergent flow: aq
— +V.wvg=0
ot q
% We split this advection term into the advection by the time mean and the transient eddy’s:
oq

— +V.vg=-V.vy¢
ot q q
= Let’s represent the eddy covariance term through analogy with molecular diffusion, i.e.
transport down the mean gradient, so: —_ -
P & v = —KVq

% This way, the transient forcing term will transfer properties down gradient and will smooth
out gradients. We can substitute it into the non-divergent flow equation in which the substantial
derivative of g is represented in term of g, as:

_ OW the trgps,
. . ansj
frt 'mg to impger the meap flow, Rt
is ¥ :
a parametenzation/closure

= In general, K is a matrix, a second rank tensor. Diffusion is usually not isotropic for large-
scale flows, meaning that diffusion in some directions might be stronger than in other directions. For

example, the flux v'q’ is represented by a coefficient (—x"”) times the meridional gradient and another
coefficient (—x¥?) for the vertical gradient: _ _
(1) g v — v _ 0208

Oy " 0z

% These coefficients come from turbulence theory. We can estimate them by using some
scaling arguments: kK"Y ~ v'l" where v’ is a typical eddy velocity and I’ is a "mixing length”.
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5.2.c) Symmetric and asymmetric diffusion
= We can decompose K into symmetric and antisymmetric parts K = S + A.

* The simplest specification is isotropic downgradient diffusion.

k0 0 % The 3 X 3 K matrix is just a diagonal matrix with the same
K=S§=]0 %k 0 constant down the diagonal and the diffusive flux is downgradient:
00k F=-kVg

* In general, a downgradient flux is associated with symmetric matrices §.

=> But this matrix can have an anti-symmetric part 4, such that: F' = — AV, and:
F.V§=—(AV{).Vg=0

% A will consist of off-diagonal elements of opposite sign. As a result, the result of this matrix
multiplied by a vector will be perpendicular to that vector (Ax L x). This means that this diffusive flux
is neither upgradient nor downgradient, but it is parallel to the contours of the mean state. This flux is
called a “skew flux”.

A skew flux is thus equivalent to advection by a non-divergent flow. Its velocity can be
represented by a stream function: v = V a). Therefore, the skew flux does not change the gradient,
it goes along the gradient.

= Whether or not it is appropriate to use straightforward isotropic downgradient diffusion
or have some anti-symmetric terms in the matrix depends on the time-scale we analyze and on the
tracer variable (conserved or not) for which we are trying to represent the effect of

5.2.d) Parameterization
= Here is an example of a parameterization that is often used in ocean models.

L It is more difficult to model the ocean than the atmosphere because the Rossby radius is
significantly smaller, a few hundred kilometers vs. a thousand kilometers. Most atmospheric models
now have no trouble resolving these scales. To resolve geostrophic in the ocean, one needs to
use a substantially higher resolution which is quite expensive to run on a computer, especially for long
simulations. There is a trade-off between the length of the simulation and how much you can resolve.

—— warm

& Imagine that the geostrophic eddy-scales

0 ‘ _ are not fully resolved in a chosen model
‘ l, L “-'T )4 l“ configuration. We thus have to represent their effect

—”E—“' e on the larger scales in some other way. The Gent and
m/\/\ McWilliams parameterization is one approach to
cold doing this. It is illustrated in the figure showing

w=0 density surfaces near the thermocline.

00—

= |sotropic diffusion would simply flatten the density gradients in the vertical.

= Another way to do this, in agreement with the mechanism of baroclinic instability we studied
in #GFD3.4, is to flatten-out the tilted density contours by advective flow causing a transfer of energy
between the potential energy stored in the slope of isentropes and kinetic energy of the growing
systems. The Gent and McWilliams scheme formulates the eddy closure in terms of asymmetric
diffusion of thickness, i.e. the circulation associated with this scheme is represented by a skew flux in
the diffusion scheme.
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GFD5.3: Systematic Effects of Transient Eddies on Ocean Gyres

5.3.a) Potential vorticity homogenization

= We discuss now the systematic effects of on ocean gyres. We study a simple case
in which the effect of transients is represented as an isotropic diffusion (see #GFD5.2b) and we will
discuss the diffusion of potential vorticity (PV).

% We are going to look at very large-scales in the Ocean and ask
ourselves what is the effect of adding some diffusion of PV on the mean-field
of PV? It is useful to study potential vorticity in this context for two reasons.

1) Because PV is conserved following the motion, so it is meaningful
to talk about its diffusion.

2) Knowing the potential vorticity implies knowing the flow. There is
an intimate connection between the large-scale flow and the large-scale
potential vorticity.

= Here is the generic advection-forcing-dissipation equation for the conservation of the
otential vorticity:
p y 3q

5t +v.Vqg=V.(kVq)+ S

The effect of transients on PV are represented as an isotropic diffusion (see #GFD5.2b)
S is a source of potential vorticity

% On the large-scales, we consider a model of steady non-divergent flow, isolated from any
sources of PV.
= The flow being steady means that time variations can be crossed-out.
= We are in a region that is sheltered from wind stress forcing, i.e. away from the surface
of the Ocean - in the deeper ocean where the flow does not feel the forcing effect S.
= Non-divergent flow implies that v. Vg = V. (vq)

> The PV conservation is written V.(vq) = V(an)

= Let’s consider a closed contour of the flow and estimate the integral of this equality over
the area delimited by this contour.
f] V.(vq) dA = f / V.(kVq) dA
A A

* The left-hand side integrates to zero.

f/Av.(vq)dAzj{(vq).ﬁdl:qj{v.ﬁdz:q/Lv.vdA:o

1) Following the divergence theorem (see #GFD1.3a), the area integral of a divergence is the
line integral around that contour of the flux of g perpendicular to the contour.

2) Since q is constant on this contour (unforced flow) then g can come out of the integral
which is now the line integral of the flow perpendicular to the contour.

3) Following the divergence theorem again, the line integral can be rewritten in terms of the
area integral of the divergence of the flow.

4) Since we imposed the flow to be non-divergent then the LHS is equal to zero within a flow-
contour (which since we have steady free flow is also a g-contour).

* The right-hand side must also be zero within the area.
— Using the divergence theorem, the area integral of the divergence of kVg must be equal to k times
the line integral of the component of gradient of g that is perpendicular to the boundary.

// V.(kVq) dA = fﬁ:Vq.ﬁ dl =0
A
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% This result means that as we integrate around this flow contour, the gradient perpendicular
to this contour must integrate to zero in a steady unforced flow.

As illustrated on the schematic, this cannot be
true if the contour encloses an extremum of q. In this
case, the gradient of g perpendicular to a flow-contour is

\Vq not going to integrate to zero. This means that the eddies
are going to transfer properties to the mean flow until
such a point is that it does become zero. The extremum
in g is going to get eroded and eliminated, until a state is
achieved in which the potential vorticity is uniform (one
constant value) throughout the region

Talking of an extremum in potential vorticity reminds us of the for
barotropic instability (see #GFD3.3e). An extremum in PV is a necessary condition to create instabilities
and generate transient flow. In turn, the transient flow will act to eliminate the source of the instability.
The final result is that all gradients of potential vorticity will be eradicated, resulting in the
homogenization of the potential vorticity to a uniform value (in regions remote from sources of gq).

5.3.b) Examples in models and observations

QG model - mid-level PV

= Here are a couple of examples.

. . e Y m 2
model. It is not the top layer of the ocean. Itis at a depth where [~ &) ¥ :t:ﬁ'

the flow is isolated from forcing. On the top panel, we observe ‘\',';:‘ - /%{: oA
a large region of uniform potential vorticity (no horizontal
gradients) where the gyre is active. The gradients are pushed
out to the edge, where there is no flow.

This is illustrated on the bottom panel, in which values
of g (vertical axis) are plotted as a function of i (horizontal axis).
It comes down to this ultimate state where

1) either there are variations in g but in that case
1P =0, i.e. there is no flow, i.e. the f-effect Tq
outside the flow region,

2) or i is varying (there is a mean-flow), in which
case q is uniform (within the gyre). {

N . . LT e Wizt i) (NS S O
* On the right is the potential vorticity from an ocean k3 -'::,‘es}vk%w‘f
P oy

Observed PV on isopycnal surfaces

* On the right is an example of ocean gyres from
observations. The lower figure shows a deeper layer
and uniform values of potential vorticity can be
observed within the gyre.

% The upper figure shows a layer nearer the surface
where the flow is not isolated from the surface forcing.
q values are not uniform but portray closed contours
around the gyre. This is different from the classical
large-scale ocean circulation theories (see #GFD5.3c).
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5.3.c) Stommel vs. Fofonoff

= In this section, we focus on the large-scale ocean circulation and we contrast two paradigms
of large-scale ocean circulation theory.

* The first one is the Stommel solution. The
Sverdrup term, i.e. the advection of planetary vorticity
(BV), is balanced by forcing and friction, so:

ﬂV - %VAT,; — RV/\V

Contours of potential vorticity are parallel to
latitude lines.

» As the flow goes south, the wind stress forces
it to cross these contours. The flow is forced to change its potential vorticity.

» As the flow goes back north, it has to become an intense jet, so the friction term can be
large enough to remove the vorticity that was injected by the wind stress.

% The Stommel gyre is forced and dissipated and the absolute vorticity is always changing.

* There is another solution in an unforced context.

» Imagine an unforced system, an Ocean gyre in
which the potential vorticity is conserved — it never
changes. This means that the flow goes around a flow-
contour, the PV-contour remains parallel to that flow
contour. An unforced barotropic system follows:

ﬂ:i—z+v‘7q=0 with g =8¢+ f

dt
v.V€+ Bv=v.Vqg=10

» There is a cancellation between the advection of relative vorticity and the advection of
planetary vorticity. The sum of the two is conserved, i.e. PV is conserved and J(1,q) = 0 (see
#GFD5.1c). This means that q is strictly a function of the stream function (g = q(1)). In this barotropic
case, the potential vorticity is the relative vorticity plus fy and is a function of 1, so that:

V2% + By = fn(v)

% This is a kind of opposite extreme view of the ocean circulation compared to the forced
dissipative Stommel gyre. It is called a Fofonoff gyre. We imagine that the ocean circulation gets into
this state due to the action of transient eddies modifying the potential vorticity field.

5.3.d) Diffusion and the strength of the gyre

= We do not know the relationship between g and . The simplest relationship we can
consider is a linear relationship, meaning that the gradient of q is proportional to the gradient of y:

dgq

= The budget of (steady) q in the upper layer involves some forcing and dissipation:

J(W,q) = V.(kVq) + 8

= To estimate the value of the linear coefficient, we can integrate this equation within a
streamline 1, i.e. around a closed contour of g.

% For a non-divergent flow, the LHS is zero (see #GFD5.3a), which reveals a balance between
a dissipative term (from the transients) and a forcing term:

OszAV.(an)dA+[/ASdA
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= Using the divergence theorem (see #GFD1.3a), we can eliminate the divergence of the
diffusion by transforming the area integral into the line integral of kVq. Vq is expressed in terms of Vi
using the linear relation we hypothesized. It follows:

= f/ASdA=—j{anq.ﬁdlz—j{bnj—;Vip.ﬁd;q :_ﬂASdA

$y ke v.dl

= The linear relationship between g and 1 is determined by integrals of forcing and dissipation
around the closed gyre circulation.

= Integrated eddy diffusion provides the link between the g / ¥ relationship and the strength
of the circulation.

* In regions isolated from forcing, the numerator is zero but the denominator is non-zero, so
the field of g must be uniform. g is homogenized as seen in #GFD5.3a.

dq . . . .
% As ﬁ is a constant, it can be moved outside the integral and we get:

% This is the other extreme view of the ocean circulation.

GFD5.4: Examples of Scale Interactions in the Atmosphere

5.4.a) Long-lived atmospheric flow anomalies

= In this section, we show examples from the atmosphere and focus on the maintenance of
low-frequency variability. We ask the questions:
= How does the atmosphere stay in a particular configuration over long periods of time?
= What is the relationship between low-frequency variations and the fast-transient eddies?

Low-frequency vorticity fluxes Low-frequency thermal fluxes

e

= Here is a first example (from Sheng et al., 1998) of a very important feature of the low-
frequency variability of the Atmosphere. The figure above shows the result of a composite analysis of
the northern hemisphere (bottom is North America) emphasizing a typical Low-High-Low Cold-Warm-
Cold configuration associated with the Pacific North American () pattern. The atmosphere very
often finds itself in this pattern, either in its positive or negative phase.

& The question here is: Does this pattern get dissipated
by the transient eddies - their systematic effect - or is it
reinforced?

Transient eddy vorticity fluxes
4

* On the left is the geopotential height tendency due to
the transient eddy fluxes during these episodes of positive PNA.
The pattern is in phase with the low-frequency pattern, i.e.
Negative-Positive-Negative configuration, thus reinforcing the
low-frequency pattern during episodes of positive PNA. The
transient eddy momentum fluxes act to maintain the pattern in
the geopotential height.
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, Transient thermal fluxes
* Conversely, the transient fluxes of temperature show a .

Positive-Negative-Positive configuration, which tends to warm up
cold regions and cool down where it is warm. Transient fluxes of
temperature are thus dissipating the temperature signature.

= In conclusion, observational analyses consistently show
that high-frequency transient eddy vorticity fluxes reinforce the
low-frequency patterns, while transient thermal fluxes dissipate
them.

= Here is a second example (from Haynes and Marshall, 1986) of a long-lived atmospheric
feature called blocking that can be observed over Europe. It manifests as a High to the north and a
Low to the south. In the wintertime, it brings very cold air from Russia to western Europe. This
configuration remained there for a long time in February 2012.

% It is interesting to analyze what transient systems coming across the Atlantic do to this
pattern: do they sweep it away or do they act to maintain it?

* Here are the results from an idealized model experiment in which a wavemaker is put
upstream to generate high-frequency disturbances. The potential vorticity flux divergence shows that
these transient eddies impinge upon this reversed dipole downstream. The transfer of potential
vorticity is such as to maintain the stable block against dissipation.

Wave maker

A%

= In conclusion, there is evidence that high-frequency transient eddy vorticity fluxes maintain
this blocking configuration and this explains why it is such a long-lived feature.

5.4.b) Transient feedback on a forced response

= In this section, we study how transient eddies modify the atmospheric response to some
other external forcing (from Hall et al., 2001). We recall the potential vorticity development equation:

dq
ot

% The time average of the potential vorticity flux is the average forcing minus the average
dissipation called G:

+vVg=F-D

vVqg=F-D=¢G
% We then split the time-averaged potential vorticity flux v. Vg into two components: the flux

by the time means (v. Vq) and the transient term (v'". Vq'). The latter is put on the RHS to be considered
as a forcing (as in #GFD1.1e and #GFD5.1c) and the sum of the forcing is then called HH :

vVg=F-D-Vv' V¢ =H

= Two forcings: one is the real forcing (G ), and another is a forcing that includes the transient
eddy fluxes ( ). These two forcing terms can be used to drive a model.
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g is diagnosed from data and is used to drive a simple
atmospheric General Circulation Model (GCM):

0q
5t +v.Vg=G

% In a second experiment, a small perturbation f’ is
prescribed. Here, we add a perturbation to the sea surface
temperature in the western Pacific. We run the GCM again with this
extra bit of forcing associated with this perturbation:

X v NVg=G+
ot

= The difference between the two long runs (see figure above) shows a
global response, characterized by a large high downstream in the Pacific, a low
over the north pole, and another high over the Atlantic-European sector.

= We ask now what the contribution of the transients in this response
is. As these two experiments will not necessarily have the same value of the
transient component to the forcing (v'.Vq’), we diagnose the difference in
transient forcing between the two experiments (A(v'.Vq"), see figure on the
right).

21 We now force the GCM with the forcing H. (instead of G): % +v.Vg=H

% If we initialize the model with its time-mean @, there is
no development because H is what is needed to stop any
development. Therefore, the initial conditions perpetuate.

Then, we add the same small perturbation f” to this forcing
and perform another simulation. We have a model in which the
transient part is already taken into account in the forcing and we
apply a small perturbation. We have a linear perturbation model.
In response to the Pacific SST anomaly, we get a response which is
not as global as in @(which was the fully nonlinear response
with modified transient eddy feedback). The linear response is
basically just a Pacific response.

So then the question is: Is the difference between these two sets of experiments due
to the change in the transient eddy forcing? Can we prove that we can represent the aggregate
transient eddy effect in a linear model?

% To test this hypothesis, we take A(v'.Vq’), scale it
appropriately, and add it to the linear model as an extra transient
forcing, giving:

dq / o
—+v.Vg=H+ f — A(W'.V¢q)
ot

= The resulting pattern resembles closely the difference
between the runsin @nd yet it is not the same kind of experi-
ment at all. In @, it was the difference between two fully non-
linear turbulent experiments, while Q3EY is a linear model res-
ponse in which the turbulence has been added as a constant
forcing.

We have thus proved that in a linear framework we can reproduce the effect of nonlinear
transient eddies in the context of the response to a heating perturbation.

122 GFD5.4: Examples of Scale Interactions in the Atmosphere



5.4.c) The importance of nonlinearity

= And we arrive at fundamental considerations about the importance of non-linearity in low-
frequency variability.

* There is absolutely no question that the dynamics of the Atmosphere and Ocean are
fundamentally nonlinear. For example, we mentioned that the difference between cyclones and
anticyclones is associated with non-linear dynamics (see #GFD2.1a).

% Does this mean that the contribution of transient fluxes to low-frequency variability is
automatically a nonlinear phenomenon? Or can it be thought of as a linear phenomenon? Changing
something, the transients change one way, then changing it in the opposite way and the transients
change in the opposite way? (That would be linear)

= We are asking two different questions related to different time-scales:

= The first question is “are these eddies nonlinear?” and the answer is “yes, definitely!”

= The second question is “is the aggregate systematic effect of these eddies in modifying the
atmospheric response to other types of forcing nonlinear?” and the answer is “yes, maybe”.

% This is not the same question and there is no universal accord in the research community.
There is a spectrum of opinions.

Supporters of nonlinear systems identify the Lorenz
attractor system, the famous butterfly attractor, as a good model
for the Atmospheric variability on low frequencies.

| Lorenz The figure to the left shows the Lorenz system mapped
L System g tin phase space. The many points show the instantaneous state
of the system throughout a long integration of the simple Lorentz
equations. They cluster very clearly onto two nodes with a
bimodal distribution in one of the variables. Here we can identify
two “regimes”. The state goes from one regime to another and
the time spent between the regimes remains quite small
compared to the time spent in either one regime or the other.

This might be a useful way to think about the Monthly mean 500mb height
Atmosphere. On the right is an example of the 1
(monthly mean) atmospheric variability represented in
terms of the occurrence of two important patterns of
low-frequency variability Pacific North America (PNA,
horizontal axis) vs. the North Atlantic Oscillation (NAO,
vertical axis). For each mode of variability, the
associated PDF is also shown.

The question is “are the points clustering in
specific regimes?” This is something that not
everybody agrees about. EOF2 |

= |t is possible that they are clustering in two
regimes and we can think of transitions between
regimes.

= Or it is possible that this impression of
clusters is due to the sample of data that is finite
(limited). In a finite sample of statistically random
variables, you are always going to find some sort of
clustering. So, it may also be appropriate to explain all
this in a linear framework.

In linear dynamics, you will generally have Gaussian statistics and not the bimodal statistics
associated with the Lorentz attractor.
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Below is a linear equation that can be used, in which x is a state vector that represents the
. dx . . .
entire state of the atmosphere. Its development d—f is determined by a linear operator, some external

forcing, and some Gaussian noise:

linear operators
dx
— =Lz +[+Bn
state vector external forcing Gaussian noise

The Gaussian noise can be modified by another linear operator while remaining a linear
system. If that second linear operator is independent of the flow x, then we still have Gaussian
statistics everywhere. It is also possible to have non-Gaussian statistics with this linear system - skewed
PDFs - provided that B is a function of the flow x. So, we can go a long way with such linear model to
analyze the low-frequency variability.

GFD5.5: Zonal Jets and Turbulence

5.5.a) Zonal jets revisited: Ocean currents

= The characteristics of the ocean circulation depend on the time scales considered:

* An instantaneous snapshot resembles a sea of eddies, i.e. little round blobs everywhere.

= A very long-time average primarily captures the anticyclonic gyres, Gulfstream, Kuroshio.

» The large-scale ocean circulation on a time-scale
of a few months is characterized by zonal jets of alternating
sign, eastward and westward jets separated by a typical
length scale in the meridional direction. o

Ocean model U400m

This is illustrated in the picture on the left (from
Richards et al., 2006) showing the zonal flow at 400 meters
depth from a long simulation with a numerical model of the
Ocean.

Latitude

The situation is a little bit noisier in the
observations, but the surface geostrophic flow and
geostrophic  vorticity, estimated from  altimetric
observations, also reveals these zonal jets.

'~
1600 aow o o
Longitude

5.5.b) Wave-Turbulence crossover
In this section, we look at the theory of turbulence at zonal jet length scales.

The | is the length scale on which relative vorticity and vortex stretching make
equal contributions to potential vorticity (see #GFD1.2a, and #GFD3.4c):

f? VgH
Vi~ gy = L~YEZ
gH i
The Rossby radius is the gravity wave speed divided by the Coriolis parameter.

= Let’s now consider larger length scales. We use the vorticity equation (see #GFD1.3b):

%—I—V.V{—I—ﬁvzﬂ —+ v.V&~ Bu

The development of relative vorticity is balanced by the advection of relative vorticity and
the advection of planetary vorticity. If the last two terms are of similar magnitude, a scale analysis
yields to a length-scale on which it is true:

U m
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L is the length scale on which . Note
that this very similar to the equatorial radius (see #GFD4.3a), except that in the square root we now
have the actual flow speed and not the gravity wave speed. This length is called the , Where
Rossby waves give way to turbulence.

Let's now focus on what happens in the
(turbulence). We compare the frequencies associated with these two processes:
i.e., the frequency associated with (barotropic) Rossby waves (see #GFD3.1c) and a typical turbulence
inverse timescale: ﬁl
*
w=—~uk
k2
The frequency associated with turbulence is the length scale of that turbulence (the
equivalent wavenumber) multiplied by a typical turbulent flow velocity scale.

Equating these two frequencies gives the spatial scales at which the two processes are of
the same order:

This equation is plotted in wavenumber space on the m "/fq,,@%
figure on the right. It looks like a dumbbell. The blue curve is the ¢
boundary between where the turbulence takes over and where
Rossby waves dominate. It is anisotropic (= not isotropic).

* For larger scales, inside the blue dumbbell, there are
Rosshy waves (propagating westwards and mainly zonally).

* For scales outside the dumbbell contour, geostrophic
turbulence prevails.

Of particular interest are the points (positive and
negative) where there the zonal wavenumber is small (large zonal scales) and there is a typical
meridional length scale. Does this particular meridional length scale emerge from an analysis of the
variability?. Yes, it does and it is the (see #GFD5.5c).

5.5.c) Collapse to zonal jets

= Here are the results of an idealized numerical experiment in which variability naturally
collapses into zonal jets.

* A turbulent model is initialized with only one single length-scale. The initial condition
resembles a sort of grid lattice where the length equals the size of the grid. In (k,, k) space, itis a
circle (k=constant).
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* Then, the flow gradually develops into turbulence and there will be scale interactions
because the dynamics is nonlinear. The variability spreads across scales and the original circle in the
wavenumber representation starts to spread out to other length scales.

* As the flow continues to develop, the variability spreads into a shape where turbulence is
everywhere except inside the dumbbell associated with the Rossby wave regime.

% Most of the energy congregates to long zonal scales and a particular meridional length scale.
This scale is the distance between zonal Jets that naturally emerges.

= This is a neat theoretical account of the zonal jets observed in the Ocean.
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EPILOGUE

Dynamics on other planets ...

Scale separation and boundary condition

In this course, most of the work is based on idealized theories that we tried to apply to real-
world situations, in the Earth’s Atmosphere and Ocean.

But, our atmosphere or ocean do not always comply with the theoretical framework because
they are actually more complicated!

For instance, in the ocean, there are complicated coastlines, which are a bit annoying because
they prevent the flow from going all around the world. These coastlines make the theory much more
difficult to apply to the real world. And often, we put a rigid lid on the ocean as well, but in reality,
there is none.

Scale separation is a big problem in the Atmosphere. In the Ocean, it is fairly easy because
turbulence is very small-scale compared to the general circulation. The ocean Rossby radius is just a
few hundred kilometers or less. But in the atmosphere, the Rossby radius is of the order of a thousand
kilometers, which is pretty much the same scale as the low-frequency variability. The scale separation
is really on the limit of being applicable. The atmosphere also has a boundary condition where you
have mountains so that makes things more complicated.

To Jupiter and beyond

All these complications get in the way of trying to apply our beautiful theories. One way to
cope with this is to leave the Earth and apply these theories to planets in which there appear to be
fewer complications.

On the left is a picture of a planet where there is a
beautiful scale separation and the fluid can go all the way around
unimpeded. We observe zonal jets along with some small-scale
eddies interacting with the large-scale flow. We even observe a
beautiful example of a long-lived phenomenon that seems to be
fueled upstream by a train of eddies, allowing it to maintain itself
against dissipation. Of course, this planet is Jupiter.

On the right is Saturn with its banded cloud structures. It
even has a marvelous perfect hexagon shape on its North Pole.
This can be reproduced in theory and in experiments. With a
laboratory tank, one can generate perfect symmetric patterns of
various wavenumbers depending on the chosen parameters
(rotation rate, temperature gradients, etc.)

On the left, it is one of the moons of Jupiter, called
Europa. The whole moon is an ocean covered by a thick layer of
ice - a rigid lid! So here, we have an ocean that goes all the way
around the world and it has more water than we have here on
Earth!
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Well, it’s easy to give a lecture course where you grab pictures from NASA and say how cool

fluid dynamics is. But you can appreciate this directly from your own garden or even your balcony.
Below is a final picture of Jupiter, taken by Nick Hall through a 20cm Newtonian reflector. You can
marvel at the cloud bands and the zonal jets, along with the four moons all in a row.
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