TUTORIAL 05:
NUMERICAL ASPECT II: STABILITY AND PGF




STEP 1: Logging onto the HPC cluster

» From a terminal/konsole:
ssh -X @scp .chpc.ac.za

» Request one node with the alias command gsubil

gsubil
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OBJECTIVES

» Analyse the temperature equation, again !

» Will the ocean temperature be warm enough to swim tomorrow?
» Look at the consistency of a numerical scheme

» Analyse the stability of a numerical scheme

» Uncover the CFL condition
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Consistency and Stability: Introduction (1/3)

— From CROCOQ 3D temperature equation:
aT d aT
=+ VT = V(K VaT) + o (En, E)
= We simplify the processes at work by
studying a sumple case study, where:
= there 15 no surface forcing (adiabatic).

= there 15 a constant current directed toward
the shore u, (homogeneous in y).

= there 15 no vanation of temperature with

depth (barotropic case), 1.e. we can cross-out
the vertical turbulent diffusion term.
= there 15 no horizontal diffusion.

— From the 3D temperature, we need to solve the 1D advection equation:

aT aT

= There are only first-order derivatives 1n time and space.

= The initial conditions that portray this temperature front are known. The constant parameter u,
(the current advecting the cold condition toward the coast) must be given.



Consistency and Stability: Introduction (2/3)

— Same as m FTUTORIALO3, we work on a discretized model gnd. We replace the continuous
domain [0, L] x [0, T] by a set of equally spaced mesh points, such that:

x;=iAx,i=1,...N, and ¢t,=nAt,n=1,...N;

1
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— We need to find a consistent approximation for the equation derivatives: % and g on our model
grid. This means that the error between the discretized and the real solution must approach 0.



Consistency and Stability: Introduction (3/3)

» We have the grid of our model (horizontal anrd-vertical)

» Lets solve this equation (1D-advective equation) :

of aT—O € [0, L] te[0,T] (1
gt TUog, =0 xELOL 11 (1)

» We know T at time t at all x positions,
% We want to compute T at time t+dt

» Lets find a good humerical scheme to solve this problem

g % We need to find a consistent approximation for A
the derivatives of the equation: 9T and 9T
at 0x
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Consistency of a numerical scheme (1/5)

— In order to quantify the error we make by solving any equation on a spatial and temporal discretised
grid, we use the Taylor series expansion of a continuous function f at a point x; close to a reference
point x:

Foxo) = 1) + 12 [

= If x 1s close to xy, such that x; = x + Ax, we can write:

fr s =0 + 02 L0y [0

f" ()

nl

(xo — )" + R(x)

Ax™ + R(x)
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Consistency of a numerical scheme (1/5)

— In order to quantify the error we make by solving any equation on a spatial and temporal discretised
grid, we use the Taylor series expansion of a continuous function f at a point x; close to a reference

point x:
Feo) = £+ T2 ey -0 4+ 2 g =7 4t D2y = 4 RO
= If x 1s close to xy, such that x;, = x + Ax, we can write:
flx+Ax) =f(x) + @ﬁx + f”z('x) Ax? + -+ fl(lx) Ax™ + R(x)
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Consistency of a numerical scheme (1/5)

— In order to quantify the error we make by solving any equation on a spatial and temporal discretised
grid, we use the Taylor series expansion of a continuous function f at a point x; close to a reference

point x:
Fao) = £ + T2 ey -0 4+ 2 g =7 4t D2 gy = 4 RO
= If x 1s close to xy, such that x; = x + Ax, we can write:
flx+Ax) =f(x) + @ﬁx + f”z('x) Ax? + -+ fl(lx) Ax™ + R(x)

. . 8T . .
—s [ et discretize " There are 3 different numerical schemes:
X

O The Downsweomwr  Soneme. g8 ~ T+t - T

8% A
® The \\po-aom JonQme &J"i Th}h— T (x-8x)
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T(x — Ax)
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Consistency of a numerical scheme (2/5)

» Estimation of the error we make when we choose the

Vo s team  Ervo

_Q_)I = Tlxsn) ~-T (o) v Ewor
dx Dy
f(x + Ax T(x + ﬂx) = T(Jf) + Trl(f) Ax + T';(Ix) ﬁxz + .- P 4 R(I)

oT - TEA*‘T‘GL\ Ap +TH(Q Ay

v

T(x)

Jx |\ 2\

/

DY

T . T + 1" ax

dx 2

(1
m{)

T(x — Ax)
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Consistency of a numerical scheme (2/5)

» Estimation of the error we make when we choose the Vopnstweoan  Ervav

_Q_)I = T(Y_-\-b\(.) ~T (o) v Ewor
dx D

Evvor = AT o) .
i |t ovdev @

T(x)

(1
?‘\T(Ma

T(x — Ax)
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Consistency of a numerical scheme (3/5)

» Estimation of the error we make when we choose the \L\‘) CY¢ @ WA XQN\Q,W\Q,

OV = T - T (v-8%) ¥ Ewor \
0% Aw

T'(x) T"(x)
At

T(x — Ax) = T(x) — Ax? 4 --

0T = T (T/(y)f T MA)«(H“( WAXE )
A L 2.\
. @

T(x)
| b
_@I - \ \(YL\, - 1" (‘Q@ T(x + Ax)
dx 2!

\"\./_“'/. T(x — Ax)
St ovlev ey
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Consistency of a numerical scheme (4/5)
» Estimation of the error we make when we choose the E enke Ve d SC WML

gV = iy (\L{—A \L) - (y_- A u_) +-Grov
OX 2 D
T(x+Ax) =T(x) + Tll(fc) Ax + THZ('x ) Ax? + T”;('x) Ax> + -
1(x) 11(x) I
T(x—Ax) =T(x) — T1! Ax + T2! N r 3(!x) Ax3 + -

T(x)

fror = (a9 ’Qﬁ
)\ S— 2\
' T(x + Ax)

9n ok ovlev esvov T(x - Ax)
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Consistency of a numerical scheme (5/5)

= With thie centered scheme, the first-order derivative is better resolved than with the first order
schemes.

= The centered scheme 1s better than upstream and downstream schemes, because the truncation
error is smaller. To improve it, you can increase your resolution (Ax V) or use higher-order schemes.

T(x — Ax)

14



Stability of a numerical scheme (1/14)

Most important characteristic of a numerical scheme:

v’ Consistence : condition in space @
To improve the truncation error:

High order scheme

Increase the resolution (Ax smaller)

v’ Stability : condition in time
Does the error amplify during time?
if yes — numerical explosion / Blow Up ;5
if no — stability

— Consistence + Stability — Convergence of the discretized
solution toward the real solution, ¥V t (Lax Theorem)
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Stability of a numerical scheme (2/14)

© We will test the stability of a downstream scheme for both: —t and — such that:

oT T({t+At)—T() T/ —Tf
ot At At

Ix Ax N Ax

— We inject this formulation into the 1D-advection equation. This leads to:

PV | ' N N
aT AT A v o -T _
+uUug=—=20 — TL v r W T""\ Tn. o)
at Ox A4 AN
L b=
«\ o\
— —T'. [ _Et Wy _\"'--H - T )
Ay

= This gives T at time t + At as a function of T at time t. This 1s an explicit method. It 1s easy

to solve
16



Stability of a numerical scheme (3/14)

— We will perform a von Neumann stability analysis of our explicit solution.

= For this we use wave-like structure for T'(x) using complex form: T,, = T,,e™**

= k¥ i3 a wavy pattern that repeats indefinitely (k provides information

about its zonal extension).

= T, is the amplitude of the wavy pattern /\/\/\/

— We rewrite our explicit solution using this new notation.

nel 1 PR o\
Al - | - ,_[é'b W kT’:."'Tm)
AYL
Vo N oumaunn @,—oda\t\’g A C  (Covronk NwaeV)
Lotk T e ("L——————-"BT \l A Ve
T ™ = 17 ', e - ¢
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Stability of a numerical scheme (4/14)

/
T,

— We now define the amplification A, such that: A = ol

T, =
- We want A < 1, because we do not want the amplitude of the @

oscillation to increase over time, otherwise the solution would explode:
T o =AT, =A’T, _, = =A"T,
T, .
A= }ﬂ = 1- C(E‘k‘ﬁx — 1) =1—C(cos(kAx) —isin(kAx) —1) =1+ C(1 — cos(kAx)) — i C sin(kAx)
n

real part imaginary part

|A||? = real part? + imaginary part?
14117 =
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Stability of a numerical scheme (4/14)

= We want A < 1, because we do not want the amplitude of the )
oscillation to increase over time, otherwise the solution would explode:

A=14C(1-cos(kAx)) —iC sin(kAx)

2 = real part’ + imaginary part’

2=[14C(1 — cos(kAx))]* + [C sin(kAx)]?

2=1+4C?(1 — cos(kAx))? + 2C(1 — cos(kAx)) + C? sin*(kAx)

2 =1+ C?(1 +|cos?(kAx)|— 2 cos(kAx)) + 2C(1 — cos(kAx)) + C?|sin?(kAx)
2=14C?*2 — 2cos(kAx)) + 2C(1 — cos(kAx))

2=1+42C*(1 —cos(kAx)) + 2C(1 — cos(kAx))

=14 (1—cos(kAx)) x2C x (1+C)

o T ~SE« . -
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Stability of a numerical scheme (5/14)

© We will test the stability of a downstream scheme for both: % and %, such that:

oT T(+A)—-T(@) T —T10 T Tx+Ax)—T(x) T4y —T
ot At At dx Ax T Ax
. . Tn+1
— We now define the amplification A, such that: A = =
i

G

= We want A < 1, because we do not want the amplitude of the

oscillation to increase over time, otherwise the solution would explode:

| JAlI2 =1+ (1 — cos (kAx)) x 2C x (1 + C)
. >0 >0 >0

|A]|> > 1 = Inconditionnaly unstable scheme

‘. STEP2D: ABNORMAL JOB END

BLOW UP
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Stability of a numerical scheme (6/14)

® We will use the downstream scheme in space, and the upstream scheme in time. This is the upwind

scheme:
oT T(t+4A)—T@E) T/ -1 dr T(x)-Tx—Ay) T'-T,
at At T At dx Ax T Ax

— We inject this formulation into the 1D-advection equation. This leads to:

oT oT .o~ T o N, O -T = 0
_+HD_:O — —_—
dt Ox A+ AN
L)v L=
ntel . )\
— T. ~ |, - 'Et Wy kT "T_)

Ay

= This gives T at time t + At as a function of T at time t. This 1s an explicit method. It 1s easy
to solve
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Stability of a numerical scheme (7/14)

— We will perform a von Neumann stability analysis of our explicit solution.

= For this we use wave-like structure for T(x) using complex form: T,, = T,,e™**

= k¥ i3 a wavy pattern that repeats indefinitely (k provides information

about its zonal extension).

= T, is the amplitude of the wavy pattern /\/\/\/

— We rewrite our explicit solution using this new notation.

arl 1 , " w \
T‘. - —[1 - J}t Wy kT“‘ - Tm)
Ay
Vo Nl oumaunn &mlo(\t\’g A C (Covronk Nwmbw)
/\_m—‘\ ¢ /\v‘\. e ('(’L..—-—-"Kr \l /> 1 4(
T ¢ = 17 7, T (e -¢
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Stability of a numerical scheme (8/14)

=
- We want A < 1, because we do not want the amplitude of the W
oscillation to increase over time, otherwise the solution would explode:

T . =AT, =A’T,_, = =A"T,

~J»

A=22=1-C(1—e ™) =1-¢ (1 — (cos (kAx) — isin(kﬂx))) =1—C(1 — cos(kAx)) — iC sin(kAx)

2

real part imaginary part

|A||? = real part? + imaginary part’
14117 =
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Stability of a numerical scheme (9/14)

In the case of the "Upwind" scheme? . - T Wo Tl 'T{_-. = O
NT A

Amplification: |4 = 1 +2C(1 — C)(cos kdx — 1)

|IAl<1ifC<1  —  conditionnaly stable if CFL<1

Courant-Friedrichs-Lewy
(CFL) stability criterion:

C - uu.ﬂtﬂ
Ax

But numerical attenuation /diffusion ....

24



Stability of a numerical scheme (10/14)

> Leapfrog / Centered 1D Advection equation:
Timl:T;n_l 'C(Ti+1n'Ti-1n) ;C=u0dt/dx 8_T+HD3_T:0
Conditionally stable: CFL condition C < 1 ot Ox

but dispersive (computational modes)

> Downstream (Euler) / Cm‘should be non-dispersive :

Trl=Tn -C(T,"-T.") the phase speed w/k and

Unconditionally unstable group speed dw/6k are equal
and constant (u,)

» Upstream

THi=Tn _C(T"-T."), C>0 2nd order approx to the

TP =T, - C(T,n-Tp), C<g_—  medified equation:

I / I+ I 4
Conditionally stable, 5.6+ c0.0 — C%f' (1— %mﬂg _o
X

not dispersive but diffusive
(monotone linear scheme)

25



Stability of a numerical scheme (11/14)

_—

A numerical scheme can be:

* Dispersive: ripples, overshoot
and extrema (centered)

* Diffusive (upstream)

» Unstable (Euler/centered)

N\

26



Stability of a numerical scheme (12/14)

Time=1 CFL=024 Num.pnts.=100

— Analytic solution
— upwind-1

—— upwind-3

— DOS5T-3

— Analytic solution
— centered-2
— centered-4
— Lax-Wendroff

m— Analytic solution

— minmaod

— Superbee

—— van Leer (MC)
van Leer (alb)

1k ' ' ' ' ! ' ' ! ' ] [=mmm Analyfic solufion

— DST Sweby u=1

@ 051 1| —— DST Sweby nic)
0

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1
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Stability of a numerical scheme (13/14)

» 3" order, upstream-biased advection scheme : allows the
generation of steep gradient, with a weak dispersion and weak
diffusion.

» No need to impose explicit diffusion/ viscosity to avoid
numerical noise (in case of 3D modeling)

» Effective resolution is improved

28



Stability of a numerical scheme (14/14)

Most important characteristic of a numerical scheme:

v" Consistence : condition in space @
To improve the truncation error:

High order scheme

Increase the resolution (Ax smaller)

v’ Stability : condition in time
Does the error amplify during time?
if yes — numerical explosion / Blow Up
if no — stability

— Consistence + Stability — Convergence of the discretized
solution toward the real solution, ¥V t (Lax Theorem)

29



Horizontal discretization (1/3)

» Structured grids
The grid cells have the same number of sides.

= CROCO

» Unstructured grids
The domain is tiled using more general geometrical shapes
(triangles, ...) pieced together to optimally fit details of the geometry.

v'Good for tidal modeling,
engineering applications.

ATAvyy,

o
v'Problems: A A A S ATAY

av
A&VA‘TSQ §

geostrophic balance accuracy,
wave scattering by non-uniform grids,
conservation and positivity properties, ...

30



Horizontal discretization (2/3)

Linear shallow water equation:

\) By 4
e A gI‘]d &:H—fl‘+i£lﬁl =
unv n dev + fu+ &iyﬂijﬁj = 0
H . H
O+ —00 + —0;77 = 0
uv Hy Az Ay
C) ' D) !
e B grid: By — f-v—l—iﬁz:ﬁj = 0
A
u n u v M ¥ dyv + fu+ &iﬁjﬁi =0
Y
i H —9 H —i
) . ey + aﬁi'iﬂ + &_yé;i'”l = 0

= A staggered difference is 4 times

more accurate than non-staggered ¢ C gid:
and improves the dispersion A
relation because of reduced use of o+ fu? + om = 0
averaging operators

:’:}tu—f#“r%ém = 0

H H
O+ —Su4 b = 0
i1+ A i+ Ay U .



Horizontal discretization (3/3)

» B grid is prefered at coarse resolution, B)
when Coriolis is important:
=Superior for poorly resolved inertia-gravity waves.

="Good for Rossby waves: collocation of velocity points. |

uy uv

v

=Bad for gravity waves: computational checkboard mode.

C)

» Cgrid is prefered at fine resolution,

when Coriolis is less important:
=Superior for gravity waves.
="Good for well resolved inertia-gravity waves.
=Bad for poorly resolved waves: Rossby waves
(computational checkboard mode) and inertia-gravity
waves due to averaging the Coriolis force.

i¢mm CROCO

» Combinations can also be used (A + C)

32



Pressure Gradient Force (1/6)

The sigma coordinates represent with good accuracy the bottom and the surface layers.

BUT]| the sigma coordinate system is also associated with errors in the estimation or the Pressure
Gradient Force.

» In the momentum conservation equations, we find a term associated with the horizontal
gradients of the pressure field:

ou 1 9P 9, Ju
M iVu—fo = —— 2 U, (K V) + — (}«:. L._)
57 T UV fv 0 Oz + Vi (K- Viyu) + 55 ([
v 1 9P 0 v
1. = ——— + Vi (Kyp. Vi — | Kppp—
8t+uVﬂ—|—fu ﬁuay_l_ n (K ;U)+3z( M 8:)
= This horizontal gradient must be computed at constant z. |t can be written:
1 dP
Po 0x z

» We want to transform the horizontal derivative of P between z and s coordinates.

33



Pressure Gradient Force (2/6)

= This horizontal gradient must be computed at consta‘nt Z. It can be written:

1 aP

po 0x

Z

» We want to transform the horizontal derivative of P between z and s coordinates. With a
little bit of geometry, we can show that:

3_{;’) _ pc = 9a dz, 6z — 0
oz dox
. o8 " bo—os (62 . b5 b
A C _ — -
Pg s -z (5$)+ ox
b2 06| _ 06 (92|, 09
N dr|, 0z \Oz|, oz |,
¢A dx ¢B Z % 5 @ _@ %
dz|.  dx|, 0z 3z,
= |t follows that:
1 9P B 1 dP 1 0P 0z
“podxl, ~ pooxl, " p, 9z 8xl,

34



Pressure Gradient Force (3/6)

= \We obtained:

LoPp  10P +1153Pé:?z'
Po axz Po 0x s Po azaxs
1LoPp  10P +18P8$62
po0xl,  podxl. pydsdzadxl,

L, 0s 1 . . ) :
= With EZ ~ the horizontal pressure gradient is written as the difference between 2 terms:

1 143dPoz

Y Hp, 85 0x

1 0P

z_ Po ax

PGF in @D PGF along @ Correction term to eliminate the vertical
z coordinate iso-sigma surfaces gradient contained in the first term

1dP

po Ox

5

. _ _ ) a
» On sigma level can have important differences of depth on a short scale —i
5

= On steep slopes (sharp topographic changes such as the continental slope), terms @ and
(2 are both large, with comparable amplitude. One small error in their estimation results in important

errors in the PGF calculous. This is called the Truncation error.
35



Pressure Gradient Force (4/6)

» To control the amplitude of the truncation error, we need to respect this condition:

dP| dP oz
|, "9z 0x,
£ = B_P +a_Pa_z < 1
axs azaxs

»# If the truncation error on the PGF is important, it can result in artificial “numerical” currents
over the slopes.

= To check if there is an error in your configuration, you can run a neutral simulation
(no forcing, no currents). If you run the model, you should have no current in the outputs.
BUT] if the pressure gradient errors are substantial, you will observer geostrophic currents over the
slopes.

» To reduce the pressure gradient error...
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Pressure Gradient Force (5/6)

* Smoothing the topography using a
nonlinear filter and a criterium: ., r=Ah/h<0.2

e Using a density formulation =~ ——

5

1 aP 1 ap g [do|
_—— | = | d:
Py O | Py x| mfﬂ.rz
. . |;
* Using high order schemes to reduce QX _g [[B_>02),
the truncation error (4th order, oo & poJ x| 97 ox| |

McCalpin, 1994)

e Gary, 1973: subs’gracting a reference horizontal averaged value
from density (p’ = p - p,) before computing pressure gradient

 Rewritting Equation of State: reduce passive compressibility effects
on pressure gradient

37



Pressure Gradient Force (6/6)

» r=24h /h is the slope of the logarithm of h
» One method (CROCO) consists in smoothing In(h) untilr<r,

-50:- Res: 5 km 3 m:- Res: 1 km

"l r<025 Senegal | <025

= / Bathymetry ..

Profil

1
Bathymetry

: / Convergence at ~ 4

- Smoothing Error )
km resolution

o 8 5 & B B & 8 & &

Standard Deviation [m]

= w o @rid Resolution [deg] 38




STEP 5: Visualising model outputs

» Launch Matlab and edit the following file:

>> edit croco _diags.m

>> croco_diags

» Make your first plots:
>> plot diags

» Visualise the outputs with croco_gui

>> croco_guil

» Enjoy!!!
{ww oF Cop, u, . ] %'r\ /.\ : : M &:: (::m
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STEP 6: Exiting

» Exit Matlab:
exit

» Give back the compute node:
exit

» Logoff the Lengau cluster:

exit

m
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