TUTORIAL 03: NUMERICAL ASPECT I: FINITE DIFFERENCES

STEP 1: Logging onto the HPC cluster

> From a terminal/konsole:

ssh -X login@scp.chpc.ac.za

> Request one node with the alias command qsubi1

qsubi1

OBJECTIVES

- ➤ Analyse the temperature equation
- > Admire my dream swimming pool
- > Discretize the swimming into a regular a mesh grid
- > Transform continuous derivatives by finite difference approximations
- ➤ Solve the 1D-Diffusion equation in MATLAB

The Grid

➤ Let's consider Temperature data (T) discretized on a grid :

My Dream Swimming Pool

My Dream Swimming Pool

My Dream Swimming Pool

Let's model how the temperature will evoluate in the swimming pool

> Let's model how the temperature will evoluate in the swimming pool

> To do so, you will solve the Temperature équation :

$$\frac{\partial T}{\partial t} + \vec{u}.\nabla T = \nabla_h \left(K_{Th}.\nabla_h T \right) + \frac{\partial}{\partial z} \left(K_{Tv} \frac{\partial T}{\partial z} \right)$$

➤ Let's model how the temperature will evoluate in the swimming pool

> To do so, you will solve the Temperature équation :

$$\frac{\partial T}{\partial t} + \vec{t} \cdot \nabla T = \nabla_h \left(K_{Th} \cdot \nabla_h T \right) + \frac{\partial}{\partial z} \left(X_{Tv} \frac{\partial T}{\partial z} \right)$$

- We can simplify the equation, under particular hypothesis:
 - There is no currents in the swimming pool
 - We do not consider variation of temperature with depth
 It becomes a 1 Dimensional (1D) problem in the x coordinate
 - The diffusion coefficient (K_{Th}) is a constant

> Let's model how the temperature will evoluate in the swimming pool

> To do so, you will solve the 1D diffusion equation:

$$\frac{\partial T}{\partial t} = K_{Th} \frac{\partial}{\partial x} \left(\frac{\partial T}{\partial x} \right)$$

- $\bullet \, \frac{\partial T}{\partial t}$ is the temperature increment during the period of time ${\rm dt}$
- ullet K_{Th} s the diffusion coefficient (ex: 0.001 m²/s)

•
$$\frac{\partial}{\partial x} \left(\frac{\partial T}{\partial x} \right)$$
 the **Laplacian** operator plied to the temperature field with an horizontal scale dx

 \rightarrow The first step in the discretization procedure is to replace the domain $[0, L] \times [0, T]$ by a set of mesh points. Here we apply equally spaced mesh points :

$$x_i = i\Delta x$$
, $i = 1, ..., N_x$ and $t_n = n\Delta t$, $n = 1, ..., N_t$

ightharpoonup Let's model the temporal derivative $\dfrac{\partial T}{\partial t}$

 \triangleright Let's model the temporal derivative $\frac{\partial T}{\partial t}$

$$\frac{\partial T}{\partial t} = \frac{T_i^{n+1} - T_i^n}{\Delta t}$$

Forward difference

➤ Let's model the spatial derivative $\nabla^2 T = \frac{\partial^2 T}{\partial x^2}$

➤ Let's model the spatial derivative $\nabla^2 T = \frac{\partial^2 T}{\partial x^2}$

► Let's model the spatial derivative $\nabla^2 T = \frac{\partial^2 T}{\partial x^2}$

$$\frac{\partial}{\partial x} \left(\frac{\partial T}{\partial x} \right) =$$

► Let's model the spatial derivative $\nabla^2 T = \frac{\partial^2 T}{\partial x^2}$

- $\frac{\partial T}{\partial x} \approx \frac{T_{i+1}^n T_{i-1}^n}{2\Delta x}$
- $\frac{\partial}{\partial x} \left(\frac{\partial T}{\partial x} \right) \approx$

Centered difference

► Let's model the spatial derivative $\nabla^2 T = \frac{\partial^2 T}{\partial x^2}$

$$\frac{\partial T}{\partial x} = \frac{T_{i+1/2}^n - T_{i-1/2}^n}{\Delta t}$$

Centered difference

$$\frac{\partial T}{\partial x} = \frac{T_{i+1/2}^n - T_{i-1/2}^n}{\Delta t} \quad \text{Centered differen}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial T}{\partial x} \right) = \frac{\partial^2 T}{\partial x^2} \approx \frac{T_{i+1}^n - 2T_i^n + T_{i-1}^n}{\Delta x^2}$$

► Let's model the spatial derivative $\nabla^2 T = \frac{\partial^2 T}{\partial x^2}$

► Let's model the spatial derivative $\nabla^2 T = \frac{\partial^2 T}{\partial x^2}$

$$\frac{\partial^2 T}{\partial x^2} \approx \frac{T_{i+1}^n - 2T_i^n + T_{i-1}^n}{\Delta x^2}$$

Centered scheme

Back to the diffusion equation

$$\left| \frac{\partial T}{\partial t} \right| = K_{Th} \left| \frac{\partial}{\partial x} \left(\frac{\partial T}{\partial x} \right) \right|$$

Back to the diffusion equation

$$\frac{T_i^{n+1} - T_i^n}{\Delta t} = K_{Tv} \frac{T_{i+1}^n - 2T_i^n + T_{i-1}^n}{\Delta x^2}$$

Forward Euler scheme

Back to the diffusion equation

$$\frac{T_i^{n+1} - T_i^n}{\Delta t} = K_{Th} \frac{T_{i+1}^n - 2T_i^n + T_{i-1}^n}{\Delta x^2}$$

Forward Euler scheme

$$T_i^{n+1} = T_i^n + K_{Th} \frac{\Delta t}{\Delta x^2} (T_{i+1}^n - 2T_i^n + T_{i-1}^n)$$

Explicit method: Direct calculation of the temperature at a later time from the current time

We have an explicit formulation:

•
$$T_i^{n+1} = T_i^n + K_{Th} \frac{\Delta t}{\Delta x^2} (T_{i+1}^n - 2T_i^n + T_{i-1}^n)$$

• The initial condition: T at t = 0 for all x

The Computational Algorithm

We have an explicit formulation :

•
$$T_i^{n+1} = T_i^n + K_{Th} \frac{\Delta t}{\Delta x^2} (T_{i+1}^n - 2T_i^n + T_{i-1}^n)$$

- The initial condition: T at t = 0 for all x
- → The computational algorithm consists of the following steps:
 - Initialise the vector state variable $(T_i^1, i = 1, ..., N_x)$,
 - 2 Plot T^1 at every point in the domain,

 - Apply equation (2) for all the internal points, $i = 2, ..., N_x 1$,

 Set the boundary values for i = 1 and $i = N_x$ (T_1^{n+1} and $T_{N_x}^{n+1}$),
 - \bigcirc Plot T^2 at every point in the domain,
 - ∢ Rince and repeat (steps
 ❸
 ❹
 ⑤).

STEP 1: Logging onto the HPC cluster

> From a terminal/konsole:

```
ssh -X login@scp.chpc.ac.za
```

Request one node with the alias command qsubi1 qsubi1

➤ Go your lustre directory and create a dedicated directory

```
cd lustre; mkdir diff; cd diff
```

Copy a template of the computational algorithm and start MATLAB

```
cp /home/apps/chpc/earth/CROCCO Workshop/
CROCO TRAINING Basic/3 Some files/My diffusion 1D.m .
```


STEP 2: Complete the Initialisation step

- \rightarrow You have to complete this script at lines 29, 53 and 56 (see \triangleright \triangleright below). Here are the different parts of the algorithm:
 - \rightarrow <u>Line 14</u>: *K* is the constant horizontal diffusion coefficient.
 - → Lines 16-18: the length of the swimming pool is descetized into 21 equaly-spaced points.
 - \rightarrow Lines 20-21: We begin at n = 1, with $\Delta t = 0.1s$.
 - <u>Line 25</u>: The swimming temperature pool is initialized at 25°C, everywhere. This corresponds to step **①** of the computationsal algorithm (see #3).
- >>> Complete <u>line 29</u>, to initialise (**1**) the 11th spatial point at **50**°C.
 - → <u>Lines 32-38</u>: This is a plot (②) of the temperature in the swimming pool.

STEP 3: Complete the Script

$$T_i^{n+1} = T_i^n + K_{Th} \frac{\Delta t}{\Delta x^2} (T_{i+1}^n - 2T_i^n + T_{i-1}^n)$$

- >>> At line 53, start by applying equation (2) for the 11th spatial point (3), such that: temperature new(11) = temperature(11) + . . .
 - \checkmark You can define a coefficient alpha, such that $\alpha = K\Delta t/\Delta x^2$
- At line 53, apply equation (2) for all the internal points, $i = 2, ..., N_x 1$ (8) using a for loop (for i=2, nx-1)
- At line 56, apply the boundary conditions at i = 1 and $i = N_x(\mathbf{0})$. Either the temperature at these points remains at 25°C, or you can copy the temperature of the closest internal point.
 - >>> When it is working, increase the number of time steps nt (at line 20)
 - >>> Decrease and the increase the time step dt (line 21). What do you observe?

STEP 4: Exiting

Exit Matlab:

exit

➤ Give back the compute node:

exit

➤ Logoff the Lengau cluster:

exit

