TUTORIAL 01: CREATE THE WORKING ENVIRONEMENT

OBJECTIVES

- > Review some basic instructions to prepare the working environment
- ➤ Discover the CHPC cluster called LENGAU
- Log onto the super-computer
- > Copy the CROCO and CROCO_TOOLS directories
- > Test your working environment

USEFUL DOCUMENTS

BASIC LINUX COMMANDS

Here is a list a commands and softwares we will use throughout the CROCO Training week.

1: Basic Linux commands

Linux command	Description	Linux command example
cd	Change director with a specific path	cd lustre/croco; cd;
clear	Clear the screen	clear
ср	Copy file(s)	<pre>cp path1/file1 path2/file2</pre>
diff	Compare the content of files	diff file1 file2
exit	Log out of Linux	exit
grep	Find a string of text in a file	grep "NBPROCS" file1
head	Display the heading of a file	head file1
ls	List contents of a directory	ls path1/directory1
ln	Create a symbolic link	<pre>ln -sf /mnt/lustre lustre</pre>
mv	Move file(s) or rename file(s)	mv path1/file1 path2/file2
mkdir	Create a directory	mkdir directory
rm	Delete file(s)	rm file1
rmdir	Remove an empty diectory	rmdir directory
tail	Display the end of a file	tail filel
tar	Store, list, or extract file in an archive	tar file1
scp	Copy file(s) from/to a distant machine	
ssh	Connect to a distant machine	ssh login@lengau.chpc.ac.za
vi	Edit file(s) with simple text editor	vi filel

2: List of useful softwares and how to execute them

- → Text editor: nedit
- → Execute nedit file1
- → To pre- and post- process CROCO files: Matlab (https:// mathworks.com)
 - → Execute matlab
- → To display the header of a NetCDF file: NetCDF library
 - → Execute ncdump -h my NetCDF file.nc
- → To inspect a NetCDF file: Neview
- → Execute ncview my NetCDF file.nc
- → To manipulate NetCDF files: NCO tools
 - → Concatenate files: ncrcat CROCO_avg*.nc My_CROCO_file.nc
 - Extract a variable: ncks -v Myvar My CROCO_file.nc My_CROCO_Myvar.nc

LENGAU CLUSTER AT CHPC

The main system at the CHPC for high performance computing is a cluster supercomputer called Lengau — cheetah in seTswana. This peta-scale system consists of Dell servers, powered by Intel processors, using FDR InfiniBand by Mellanox and is managed by the Bright Cluster Manager.

1: The Cluster

- → The CHPC's Dell Linux cluster has been up and running since 2014.
- → The cluster has both NFS and the Lustre filesystems over Infiniband:

Mount Po	oint	File System	Size	Quota	Backup
/home		NFS	80Tb	15GB	NO
/mnt/lust	re/users	lustre	4PB	None 🛕	NO

2: The installed softwares/libraries

- → CHPC uses the GNU modules utility, which manipulates your environment, to provide access to the supported software in /apps/.
- → Directly in your .bashrc, we will load the following modules to use the associated software/libraries: Matlab, Ncview, Intel Fortran Compilers, NCO tools, ...

Command	Description		
module purge	Remove all loaded modules		
module avail	List of available modules		
module list	List currently loaded modules		
module help	Give information of a particular module file's operations		

3: Job Scheduler

→ The CHPC cluster uses **PBSPro** as its job scheduler. With the exception of interactive jobs, all jobs are submitted to a batch queuing system and only execute when the requested resources become available. All batch jobs are queued according to priority. A user's priority is not static: the CHPC uses the "Fairshare" facility of PBSPro to modify priority based on activity. This is done to ensure the finite resources of the CHPC cluster are shared fairly amongst all users.

DDC Day commands	Description	DDC assessed assessed
PBS Pro commands	Description	PBS command example
qsub [script file]	Job submission	qsub run_croco.pbs
qstat-u login	Job status (for user)	qsub -u sillig (or the alias qs)
qstat-f [job_id]	Extended job status	qsub -f 10098976
qdel [job_id]	Job deletion	qdel 10098976
qstat-Q	List of usable queues	

STEP 1: Logging onto the HPC cluster

> From a terminal/konsole:

```
ssh -X login@lengau.chpc.ac.za
ssh -X login@scp.chpc.ac.za
```

- > Practice some basic Linux commands: cd and ls
- ➤ If your lustre directory does not exist:

ln -sf /mnt/lustre/users/login lustre

STEP 2: Requesting some interactive nodes

> Replace your .bashrc file with mine:

```
cp /home/apps/chpc/earth/CROCCO_Workshop/
CROCO_TRAINING_Basic/3_Some_files/.bashrc ~/
```

source ~/.bashrc

> Request one node with the alias command qsubi1

qsubi1

> Go back to your lustre directory.

STEP 3: Copying the source code of the CROCO model

➤ In your lustre directory, copy CROCO source code:

```
cp -r /home/apps/chpc/earth/CROCCO_Workshop
/CROCO_TRAINING_Basic/1_CROCO_code/croco-v2.0.1 .
```

➤ List the content of the croco-v2.0.1 directory:

```
cd croco-v2.0.1; ls
```

NODES

➤ Go back to your lustre directory.

STEP 4: Copying the source code of the CROCO tools

➤ In your lustre directory, copy CROCO_TOOLS source code:

```
cp -r /home/apps/chpc/earth/CROCCO_Workshop
/CROCO_TRAINING_Basic/2_CROCO_tools/croco_tools-v2.0.1 .
```

List the content of the croco tools-v2.0.1 directory:

```
cd croco_tools-v2.0.1; ls
```

NODES

➤ Go back to your lustre directory.

STEP 5: Testing MATLAB Software

> Copy two files into your **lustre** directory:

```
cp /home/apps/chpc/earth/CROCCO_Workshop
/CROCO_TRAINING_Basic/3_Some_files/TP* .
```

> Start Matlab:

matlab -nodesktop

➤ Launch the test script:

TPO test script

STEP 6: Exiting

Exit Matlab:

exit

> Give back the compute node:

exit

➤ Logoff the Lengau cluster:

exit

